NCAR-TN/IA-93
NCAR TECHNICAL NOTE

January 1974

Techniques for the Processing, Storage,
‘and Exchange of Data

Roy L. Jenne
Dennis H. Joseph

ATMOSPHERIC TECHNOLOGY DIVISION

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH
BOULDER, COLORADO

ClibPD wywy fastio.com

http://www.fastio.com/

iii

v PREFACE

The National Center for Atmospheric Research receives com-

puter data in many different binary and character formats.

We send out data in both binary and character form. In this

report we discuss selected aspects of the computer hardware

systeﬁs and some of the considerations involved in choosing data
- formats. We also describe some of the procedures and computer

subroutines that make it relatively easy to process the data

regardless of the format. These procedures lay the ground-

work for making the exchange of data between computer systems

as simple as possible.

ACKNOWLEDGMENTS

We want to thank Dori Bundy for her constructive comments con-

l\ .
cerning this text, and Linnea Cookson for typing it.

October 1973

ClibPD wwvw fastio.com

http://www.fastio.com/

CONTENTS

PREFACE - . - . L] L] L] . . - . - . . . L4 L . L] - L L d - . iii
ACImoWLEDGMENTS L] . . . L] - . . . - - . L] L] . iii

1. INTRODUCTION & & & o & ¢ o o o o o o o o o o o o o o o o o o s 1
2. MAGNETIC TAPE PRACTICES . . & & o o o s o o o o o o o o o o o o 2
2.1 Introduction . ¢ ¢ v & ¢ ¢ ¢ ¢ o o s e s e e e e e e e s 2
2.2 7-Track TaPe@S « « « o« & o o o o o o s o s o s o o o o o = 3
2.3 9-Track Tapes . « « « ¢ o ¢ ¢ ¢ ¢ o o o o s o o+ o e ..o 4
2.4 Tape Copy Options in Going from 9- to 7-Track Tapes 5
2.5 Record Gaps and End File Marks . . . v ¢ ¢ & &« o o o « « & 6
3. INFORMATION IS A STRING OF CHARACTERS . . «. ¢ ¢ « o o o o o o » 6
3.1 Introduction . ¢ & v 4 0 e b e e e e 6 e e e e e e e e e 6
3.2 The Need for Characters . . . « « ¢ o ¢ ¢« o o o o o o o o« = 7
3.3 Exchanging Character Data between Computers 7
3.4 Limitations to the Exchange of Data in Character Form . . . 8
4. TINFORMATION IS A STRING OF BITS . .+ v & « o « o « o o & 9
4.1 Introductionn .« .« ¢ ¢ & ¢ o o o o o o o o o e 4 s 4 e e s
4.2 Time and Volume: Binary Pack Versus Characters 10
4.3 Volume Comparison of Methods for Storing
rawinsonde Data . ¢« . 4 4« ¢ 4 s e s e o e o s e s e s e e . 12
4.4 Timing Comparison for Unpacking Rawinsonde Data 13
4.5 Communication . . ¢« ¢« o ¢ ¢ o o ¢ o 0 e e 4 s e e s a4 13
5. ROUTINES TO MANTIPULATE DATA . . &« v v ¢ o « o o o o o o o o o & 14
5.1 Introduction . . .‘. e e e s e s e s e s e e e e e e e 14
5.2 Packing (or unpacking) of Data into Bit Strings 14
5.3 Input/Output Problems « « « & ¢ ¢ v 0 o o oo 18
5.4 Rdtape/Wrtape and Iowait . . +« ¢ ¢« & ¢ ¢« o o o o o o o o & 19
5.5 Tape Copy Program . . « « « « o o o o o o o o o o o o s o o 20
5.6 Blocking/Unblocking of Short Variable Length
Data Records . . v ¢ v ¢ o o o o o o o o o o s o s o o o o 20
5.7 Unblock Variable Length RPTOUT Records from
Another Machine . . « ¢« + ¢ ¢ ¢ ¢ ¢ o ¢« ¢« o o o o o s s o o 25
5.8 How To Process Rptout Data on Another Machine 26
5.9 Sorting Routines . . « +v +v ¢ o o« ¢ o « o o o o o s o o o o 27

ClibPDF - www. fastio.com

http://www.fastio.com/

ClibPD

vi

6. THE CASE FOR CHECKSUMS ON STORED COMPUTER DATA .

7. GUIDELINES FOR THE EXCHANGE OF INFORMATION

8. WORD STRUCTURE OF VARIOUS COMPUTERS

APPENDICES
A: GBYTES, SBYTES
B: RDTAPE, WRTAPE, IOWAIT .
C: RPTOUT, RPTIN
D: RPTINX . . « « « « & «

E: Unpack Rawinsonde Reports

.

F: GBYTES for IBM 360 Systems .
: GBYTES for UNIVAC 1108 Systems

www . fastio.com

.

BETWEEN

e e o o .

COMPUTERS

29
33

35

39
40
41
43
44
45
46

http://www.fastio.com/

1. INTRODUCTION

We will discuss some of the considerations involved in deciding how
to process and format data and how to communicate it from one place to
another. Our goal is to make data exchange as simple as possible. Several

; programs that help in data processing will be discussed.

In storing and accessing data one should try to achieve some optimum

combination of the following desirable features:

a. Minimize the time necessary for the home computer to obtain the

data and decode it so that it is available for calculations.

b. Minimize the time necessary for another computer to decode the

data.
c. Minimize the storage volume necessary to hold the data.

d. Maintain checks to insure that if any data has been altered
since it was originally created, the programmer will be aware

of the change.
e. Guard against irretrievable loss of portions of data sets.

f. Minimize programmer time necessary to access the data on the

home computer.

g. Minimize programmer time necessary to access the data on another

computer.

It has become rather general to think of information as a string of
characters where numbérs are almost always thought of as digits in the
base 10 number system. It has been too generally accepted that while
binary information might be output from one's own computer and read back
in, the only practical way to exchange information between computers is
to convert all binary numbers to base 10 digits, output these, and then
read them into a second computer for conversion Back to binary form.
Such conversions take a lot of computer time and the character data re-

quire more storage volume than the alternative binary packing.

Thus there often are large advantages in storing numerical data in
packed binary form. However, when one sends out packed binary information,
many users on other computer systems spend time writing special purpose

machine language subroutines to unpack the data. We will describe a

ClibPDF - www fastio.com

http://www.fastio.com/

ClibPD

A

few general purpose subroutines which make it as easy or easier to unpack
binary packed data than to decode data packed in character form. These

subroutines are also useful for unpacking non-standard character codes.

In the following sections we will first discuss magnetic tapes and
then the exchange of data in character codes. Then we will describe
information in terms of a string of bits and considgr time and volume
advantages in storing data in packed binary form. We will then describe
selected computer routines that are desirable for processing packed data,
and for processing othér data too. We will also present the case for
keeping data under checksum control. Guidelines for exchanging data be-
tween computers will be given. This will be followed by a set of

program listings of selected key routines.

2. MAGNETIC TAPE PRACTICES

2.1 Introduction

Magnetic tapes are commonly involved in data processing and in the
exchange of information between computers. On a standard 1/2 inch wide,
2400 foot reel of magnetic tape, one can block about 230,000 card images
of data at a recording density of 800 bytes per inch (blocked 40 cards per re-
cord). In this example, the tape can be stored in:about .083 cubic feet where-
as the cards would take 30.2 cubic feet. Thus there is volume reduction of about
350 to 1. There are also large reductions in processing time and in shipment
cost. However, when the data volume is very low, cards may be more

efficient.

We will discuss the practices most commonly used with standard 1/2
inch wide magnetic tape. The bulk cost of 2400 foot reels of this tape has
decreased from about $40 to $9 per tape over the last ten years. Other

tape systems such as one-inch-wide '"hyper'" tapes are more costly and have

not achieved wide usage.

The tape standard for several years was to record seven channels of
data (6 for information and 1 for parity) om the half inch tape in a
recording density of 200, 556, or 800 BPI (number of 6-bit bytes of data
per inch). Now this sténdard is paralleled by one in which nine channels
of data (8 information and 1 parity) are written on the same 1/2 inch

wide physical tape. The common recording demnsities in this new standard

www . fastio.com

http://www.fastio.com/

are 800, and 1600 BPI (8-bit bytes of data per inch). One type of

tape unit is needed for the 7-track recording and another for 9-track
recording. Within each category, the less expensive drives are usually
slower, and often they cannot read or record at the higher recording
densities. Some small drives are also specialized so that they will read

even or odd parity, but not both.

Since a lot of data has been written in each of the two conventions
(7 and 9 track), it is often frustrating not to have dual capability.
Currently NCAR only has 7 channel drives, and thus must have 9 channel
tapes recopied to 7 channel on another computer. We also buy 7-track
tape drives for our small computers and for our scientific recording
hardware to match our main computers--even though 9 channel tapes may

later become the primary standard.

We will first discuss the 7-track tapes in more detail and then

consider 9-track tapes.

2.2 7-Track Tapes

Early computers were character oriented, and for a time had input/
output only on cards. Thus it is likely that the engineers designing
the first magnetic tape systems thought sqlely in terms of characters
and not in terms of general binary information. We will see that their
choice of even parity recording on tape does not permit one to record
general binary data. Thus the odd parity convention had to be added to
record that kind of data. BCD even parity may have been an unlucky happen-
stance or the choice may have been made so that at least 2 bits would be

1l's in any 7-bit byte on the tape.

The 7-track tape standard has been based on a 6-bit character code
both in computer memory and on magnetic tape. fhe six bits describing the
character code are written horizontally across the tape and the seventh
channel has a parity bit. Such tapes are normally referred to as even
parity, BCD mode tapes because the choice of a 1 or a 0 for the parity
bit is made so that the sum of the seven bits which describe the character

and its parity will be an even number.

On the 7-track tapes a zero bit in a channel is indicated by blank

erased tape (no magnetic flux changes) and a one bit is represented by a

ClibPDF - www fastio.com

http://www.fastio.com/

magnetic field change. This is called a non return to zero (NRZI) re-
cording system. A character made up of 6 zero bits would have a parity
of =zero when recorded in even parity. Thus the whole character
slot on the tape would show up as blank tape; such a character code is
not permitted because the character would be lost on the read and
probably would also cause other read problems because of the long
distance between valid data frames. The character is lost because at
least a sing;e one bit must be sensed to determine that there is a frame

of information.

The permitted 6-bit character codes for BCD even parity tape range
from 01 octal to 77 octal or 1 to 63 decimal. Since 00 octal is not a

permitted code, general binary information cannot be recorded in this mode.

In order to handle general binary information, the odd parity,
binary write convention has to be used. 0dd parity could have been used
to record the BCD chafacters as well as the general binary data, but
for compatibility the old even parity convention has been maintained as
well. Thus most tape drives have to include logic to read and write in

either even or odd parity mode.

We will now discuss the internal BCD to external BCD character conver-
sions. With 7-channel tapes and 6-bit character codes on tape, the
code for the character in computer memory is usually a 6-bit code, though
often a different code than the one on tape. In most systems, when the
programmer specifies an even parity read from a tape unit, the hardware
gives him an automatic character conversion from external BCD (tape code)
to the internal code. A better system design allows the programmer to
suppress the conversion if desired. When the internal code set.is a full
set of 63 codes there is a one-to-ome conversion and the programmer then

at least is able to convert back to the external code when that is desirable.

With 6-bit character codes, the length of computer words is normally
chosen to be 12, 18, 24, 36, 48, or 60 bits. Character oriented machines then

{
!

have character (or word) sizes of 6 bits each.

2.3 9-Track Tape

In the middle 1960's, IBM decided to change the character standards so
that people could work with more than 63 different characters. Thus, IBM

has gone to an 8-bit character in the 360 and 370 series computers. They

ClibPD www . fastio.com

http://www.fastio.com/

use an associated 9 channel tape and computer words that are usually 16,

32, or 64 bits long.

The specifications for the physical tape were not changed for the

9-channel tape drives: it is still the 1/2 inch wide tape.

The introduction of these tape drives provided the opportunity to use
only odd parity. There is no character conversion when 8-bit characters

are written from memory onto these tapes.

At 800 BPI a zero bit on the tape looks the same as blank
tape; this is the same non-return to zero (NRZI) recording system that
is used on the 7-track tapes. However, at 1600 BPI, a phase encoding method
is used whereby a zero also gives a magnetic flux change. Reports indicate

that phase encoding at 1600 BPI is as reliable as NRZI recording at 800 BPI.

On the 9 channel drives, IBM and the other manufacturers have cut

the record gap length from .75 to .60 inch.

One of the better drives will read or write on 9-track tape at 800

BPI with NRZI recording, or read or write at 1600 BPI with phase en-

coding.

Most IBM 360 installations use EBCDIC (Extended Binary-Coded Decimal
Interchange Code) for the internal character code. However, a facility
can choose ASCII (American Standard Code for Information Exchange). Since
a tape read just moves a string of bits from tape to memory, an internal
character conversion is necessary if a tape of character data is read

from a machine using a different intermal code.

2.4 Tape copy options in going from 9- to 7-track tape

When copying a 9-track tape to a 7-track tape one may take one of the

¢

options:

a. Assume that all 8-bit characters can be expressed in a 6-bit

code and output a standard external BCD code in even parity.

b. Delete the two high order bits of each 8-bit byte and write the

other 6 bits on the tape in odd parity.

c. Retain the 8-bit bytes of character or binary data in one string
of bits on the 7 channel tape. In 360 systems this is the

"convert on, translate off" option. In this case the 7 channel

ClibPDF - www.fastio.com

http://www.fastio.com/

ClibPD

tape will be in odd parity and the original 8-bit characters
will be read into successive 8-bit units of computer memory
from the 7 channel tape. This option is also used to read a

7 channel binary tape as a string of bits into a 360 machine.

We generally choose option ¢ for this problem because the information

is compact and it hasn't been altered as in options a or b.

2.5 Record gaps and end file marks

A section of blank tape called a record gap is used to separate
physical records on a tape. The gap is usually .75 inches long although
it is now as short as .60 inches on some units. The gap must be long
enough to allow the tape motion to stop, and then to be restarted before
the next record. 1If the data records are short, such as one card image
per record, most of the tape is used for record gaps.

An end file mark is a special one character record on the tape that

says: ''There is no more data of this category on the tape.'" Usually
only one file of data is written on a tape; in some cases multiple

files are kept on a tape, but this is some nuisance for the programs

that copy, inventory, and access the data. If there are several files on
a tape, the last file should be followed by at least two end file marks to

signify the end of all data on the tape.

Some software systems use synthetic end file marks. These are
usually a special short record that conveys the same message as the

standard end file (one character) record.

There also are various schemes to block a number of shorter logical
records together into larger physical records on a tape. Different
procedures are also used to segment long logical records into shorter

physical records.

3. INFORMATION IS A STRING OF CHARACTERS

3. Introduction

In the section on magnetic tapes we .spent a good deal of time dis-

cussing characters of data, where a given character might be 3, 1, 9, +,

www . fastio.com

http://www.fastio.com/

=, A, X, etc. We did this because some aspects of computer and tape

system design are associated with the character codes that are used.

; Each character is represented by a selection of holes in punched
cards or paper tape, or is represented by a code in 4, 6, or 8 bits on

magnetic tape or in computer memory.

We will now show why character concepts are necessary, and how char-
acters can be used in data exchange. We will also describe some of the

limitations in using characters for data input/output.

3.2 The need for characters

Program information is most easily entered into computers by using
symbolic letters and base-10 numbers. Computers must also be able to
process and print letters giving textual information along with numbers
which are usually desired in the normal base-10 number system. In fact,
some earlier computers (or somewhat more recent ones that are cheaper
and business oriented) were built to process characters and have limited,

if any, capability for handling binary information.

There are computer applications (such as for library bibliography
data) where most of the information is textual data and must be in char-

acter coded form.

3.3 Exchanging character data between computers

We have noted that with 6-bit character codes, the internal code
differs from one computer system to the next. Within a computer, code
conversions may be necessary because, for example, the printer may require
a different code from that used by the system. Ihe programmer is often
not aware of such code changes because the operating system makes them
when recessary. When data is written onto tape in even parity mode, the

code is changed to external BCD.

The external BCD code is common to 7-track tape systems; ASCII or
EBCDIC is used on 9-track tape systems. Provision has been made to change
between 6- and 8-bit codes to the extent possible. Thus, for example, a
9-track tape with characters for base-10 numbers may be copied to the

standard 6-bit extermal BCD code on 7-track tape.

ClibPDF - www.fastio.com

http://www.fastio.com/

ClibPD

o

3.4 Limitations to the exchange of data in character form

The exchange of character data is sometimes simple because of the
common external codes which are converted to the necessary internal
code and which then can be handled by the formatting routines on a user's
computer system. We will now discuss some of the complications that can

arise in this apparently simple process.

Much character data is taped directly from punched cards where over-
punches are frequently’used to save space. An overpunch on a card column
means that there is an 11 punch or a 12 punch along with the punch for
the numeric digit in rows O through 9. Overpunches on a card column
might be used to say that the sign of the quantity is negative, or they
might change the range of the data. (For example, a punched 27 with an
overpunch on one of the two columns might mean 127.) With an overpunch,
a character is no longer a standard character for a base 10 number and

thus cannot be processed with standard Fortran I or F formats.

In other character data sets, the volume waste in packing numeric
characters into 6-bit digits has been recognized, and two of the 6 bits
have been used for additional information, thus creating non-standard

numeric characters.

Data from character machines has been received in which the sign is
carried either as the rightmost character in a field, or as high order
bits on the righthand numeric character. This is also non-standard for

most formatting packages.

Character data is sometimes included with binary data, so that one
receives the data in the internal code of the originating computer system.
Internal codes are also written on tape when 4- and/or 8-bit characters
are used on a 9-track system, but here the problem is less severe (than

for the 6-bit characters) because there are only two different sets of

internal codes.

Although the situation is getting better, many systems have not had
the ability to read in a reasonable sized buffer of character data, and
to refbrmac it from the buffer. Either they have lacked the Buffer-read
capability or the Decode statements. In some computer systems the number

of characters allowed in a BCD-read from a tape is limited by the card

www . fastio.com

http://www.fastio.com/

: reading and printer formatting logic; on these systems, the number of
characters in a record is generally limited to 128, 132, or 150 characters.
This is too short a record to be practical for the exchange of very much
data. We have even encountered modern machine systems that would not accept
a BCD record of reasonable length; for example one such system would not:

accept a record more than 2000 characters long.

It is more difficult and costly in computer time to keep data under
checksum control when it is put on tape in even parity character codes

than when it is stored in odd parity.

if anything is non-standard about numerical character data, much more
programmer time is needed to unpack it than to unpack binary data. Using
methods that will be described later, the unpacking of binary data is as

easy or easier than the unpacking of even the standard numerical characters.

- In the next section we will discuss the computer time and storage
volume advantages of packing numerical data in binary rather than in base

10 characters.

4. INFORMATION IS A STRING OF BITS

4.1 Introduction

It is often a simplifying concept to think of information as a string
of bits. Since any character or binary number is represented by binary
bits in digital computers, we can think of all such information as just a
bit string whether it is in core memory, on a tape, or on some other storage

device. In different cases the bit string might contain information as

follows:
a. A succession of 6-bit characters where the characters might
be represented by any of a number of codes.
b. A succession of 4- or 8-bit characters.
c. A succession of floating point binary words from a particular
machine where each word is 36 bits long.
d. A series of fixed point binary words from another machine where

each number is in 32 bits.

ClibPDF - wyw fastio.com

http://www.fastio.com/

10

e. A series of satellite brightness data points, where each

measurement is packed in 5 bits (each has a gray scale of 0-31).

f. A series of bits giving data for a balloon atmospheric
sounding flight where the first 6 bits give status, the next
11 pits give pressure, then 16 for the height, 11 for temperature,
11 for relative humidity, 9 for wind direction, 8 for wind speed

and then a repeat of these for the next level.

Any of the above strings of bits can be relatively easily processed
using methods to be partially discussed in this writeup (see especially
Section 5.2). If information is maintained as a string of bits, one
doesn't really care how many channels a recording tape has or what the
characteristics of another storage medium such as drum or disk may be.
That is, one doesn't care as long as the information can be delivered back

as the same string of bits.

We will describe some of the volume and time savings that may be made

by storing data in packed binary rather than in base-10 characters.

4,2 Time and volume: binary pack versus characters

We have noted that when numbers are being stored primarily for calcu-
lations rather than for printing, one can save both time and volume by
packing the information in binary. As an example, suppose that we must
store many numbers that range from 0 to 4000 in magnitude. The volume

comparison is as follows:

Storage Method Volume Per Number
binary pack : 12 bits
4 bit characters 16 bits
6 bit characters 24 bits
8 bit characters 32 bits

ClibPDF - www . fastio.com

http://www.fastio.com/

ClibPDF -

WAV
MV

11

The timing comparison on a Control Data Corporation (CDC) 6600 computer to

unpack the preceding data:

Type Time
a. time to unpack a 12 bit number using 3 us

specialized machine language

b. time to unpack a 12 bit number using 20 us

a subroutine called from Fortran

c. time to decode a number using a 120 us

Fortran I4 format

Thus one saves appreciable time and space with binary packing of data.
Note that when processing character data, one can improve on the timing of
the Fortran formatting routine by alternative programming. In fact, it is
often necessary to program the formatting in order to maintain program con-
trol when illegal character codes are found in the data set as is often

the case.

In the preceding timing comparisions the 3 us time was achieved by
taking advantage of the fact that five 12-bit bytes can be evenly packed
into a 60-bit word. It is interesting to note that a computer word with
60 bits can be evenly divided into bytes of lengths 2, 3, 4, 5, 6, 10, 12,
15, 20, or 30 bits each, whereas a 64-bit word can only be divided by bytes
of 2, 4, 8, 16, or 32 bits.

Additional timing comparisons are made in our discussion of the Gbytes

subroutine in 5.2.

When packing a binary number into a byte, we generally use neither
the sign-magnitude convention nor one of the complement conventions for
negative numbers. We add an appropriate bias so that all numbers are
positive. This saves time in the packing and unpacking of information and

is easier to program.

If packed data is received which consists of positive and negative
numbers from a ones or twos complement machine or in sign magnitude conven-
tion (sign first), it is still fairly easy to process. One uses GBYTES
(to be discussed) to right adjust a packed data sample into a computer
word so that it looks like a positive number. A test is made to see if

the number is too big to be positive; if it is negative, some arithmetic

http://www.fastio.com/

12

is carried out as in the following example to obtain the desired negative
number. Consider binary data packed into 4 bits which uses one of the

packing convenitions: sign-magnitude, ones complement, or twos complemeﬁt.

Let k = 24 corresponding to data packed into 4 bits. The data and

needed arithmetic are given by:

decimal :acked sign- needed :acked ones needed :acked twos needed
number magnitude arithmetic complement arithmetic complement arithmetic
+2 0010 none 0010 none 0010 none
+1 0001 none 0001 none 0001 none
0 0000 none 0000 - none 0000 none
-1 1001 k/2 - n 1110 n-k+1 1111 n -k
-2 1010 k/2 = n 1101 n-k+1 1110 © n-=k

4.3 Volume comparison of methods for storing rawinsonde data

Reductions in storage volume and in access time were made by reformatting
mandatory level rawinsonde data into a binary format. This data was received
in a BCD tape format that was much easier to process than most of the original
punch card data. The format used 6-bit BCD charzcters; and since it was
a fixed format, blanks had been inserted for missing data. The NCAR binary
output format specifies the pressure level so that when all data at a
level is missing, the level may be omitted. On an average, about a third
of the levels in the fixed format had missing data; thus some volume reduction
can be attrituted to adding the pressure data but omitting the missing
levels. The NCAR binary format also includes more identification informa-
tion, and six bits are used at each level to give the status of the data.
Since the pressure is included in the format, data may also be recorded for

significant levels.

One large batch of this raob data was received at NCAR on 5§ tapes and
reformatted to 16 output tapes. The input tapes used 109,700 feet of tape
at 556 BPI and the reformatted output tapes used 22,400.feet at 800 BPI.

If the input had been written at 800 BPI, the footage would have been 87,400
feet input compared to 22,400 output or a ratio of 3.9 to 1.0.

If four of the input records had been blocked together to make a 328~
word (10 characters per word) record and this written at 800 BPI, the volume

ratio would have been 2.64 to 1.0. Note that a 328-word record is about

ClibPD www . fastio.com

http://www.fastio.com/

13

the same size as the packed and blocked reformatted records.

If the data had been reformatted into one element per 60-bit word
instead of into packed binary, the volume would have been about six

times greater than that achieved.

4.4 Timing comparison for unpacking rawinsonde data

We have noted the volume compaction of 3.9 to 1.0 achieved by reformatting
and blocking the rawinsonde (raob) data. Now we will make some timing com-

parisons.

The time to read, unpack and reformat each original raob on the CDC
6600 is about 45.2 ms for raobs having about 9 levels of data and 51.7 ms
for raobs averaging 24 levels. The unpack program uses methods faster
than Decode statements, but could be made somewhat faster by having fewer
calls to subroutines. It has a few simple checks on the range of the data.
The CDC 6600 central processor time to reformat all 602,000 raobs from the
original 56 tapes was thus about 502 min. This includes the time (about

38 minutes) to pack the data into the new format.

The average time to read and unpack a raob from the new format (using
the Gbytes subroutines) is 3.40 ms for raobs averaging 22.3 levels, 2.76 ms
for raobs averaging 16.9 levels, and 1.65 ms for raobs averaging 8.7 levels.
The total time necessary to unpack all 602,000 raobs from the 16 tapes is

thus about 34 minutes of CPU time.

Since we have used most of these data more than once, there has already
been an appreciable time saving: only 34 minutes compared to 464 minutes
are needed to access all of the data. It now appears that an optimized
version of Gbytes can be written which would reduce this time to about 24

minutes.

4.5 Communication

Communications systems for transmitting data from one computer to
another should be able to accept and deliver strings of bits instead of
demanding a special character code for the text of the message. Any type of
character or packed binary information can be easily sent from one place to
another in a string of bits. The data should be under checksum control while
being sent and a retransmission should be requested if the checksum cannot be

verified.

ClibPDF - HW/VLTGSTO‘COWW

http://www.fastio.com/

ClibPD

W

5. .ROUTINES_TO MANTPULATE DATA

5.1 Introduction

In this section we will discuss programs desirable to handle the

following problems within a computing system.

a. Pack data into a bit string (Sbyte, Sbytes) and unpack it (Gbyte,
Gbytes).

b. Input/output problems.
c. Rdtape/Wrtape and Iowait.
d. Tape copy.

e. Block and unblock short, variable length, records of data and

maintain checksum control (Rptout, Rptin).

£. Unblock short, variable length records of data that were written

by Rptout on a machine with a different word length (RptinX).

g. Sort reports stored in Rptout blocked form, or stored in unblocked

form (Sortbb, Sortuu).

Note that the word length of both the CDC 6600 and CDC 7600 at NCAR
is 60 bits.

5.2 Packing (or unpacking) of data into bit strings

In the previous section, we discussed the volume and timing reasons
for packing information in binary. We will now discuss routines that give
one the capability of formatting data in terms of numbers of bits rather
than numbers of characters. NCAR routines that do this are Gbyte, Sbyte,
Gbytes, and Sbytes. These routines pack or unpack data to (or from) a

string of bits and ignore word boundaries in the string.

Once these routines (Gbytes, etc.) are written in machine language for
any given machine, they can then be used for various data unblocking and
decoding jobs. For example, where variable length reports have been blocked
(using Rptout described in 5.6) on a machine with one word length, Gbytes
can be used to unblock reports from each record that is read by a computer
with another word length. In Section 5.7 we will describe RptinX which un-

blocks such records.

www . fastio.com

http://www.fastio.com/

15

First we will explain the routines (Gbytes, etc.) by showing their
logical similarity to format statements that process characters. In the
examples, we will use the same count of characters to skip in the Decode
format statement that are used for bits to skip in Gbytes, etc. Similarly,
the number of characters (such as I5) to process in the format will be the

same as the number of bits to move in Gbytes:
a. Call Gbyte (Npack,Isam,iskip,nbits)
Example: Call Gbyte (Npack,Isam,3,5)

This skips 3 bits in Npack and puts the next 5 bits right adjusted
into Isam with the rest of the Isam cell set to zero. The form (but

one counts bits and the other counts characters) is similar to:
Decode (8,912, Npack) Isam
912 Format (3X,I5)
b. Call Sbyte (Npack,Isam,iskip,nbits)

This precisely reverses the data flow in Gbyte; thus the right-
adjusted data in the Isam cell is stored into Npack. When the data is

stored into Npack, the bits around this byte of data are not changed.
c. Call Gbytes (Npack,Isam,iskip,nbits,nskip,iter)
Example: Call Gbytes (Npack,Isam,7,5,2,120)

This skips 7 bits in the first Npack cell, puts the next 5 bits
right-adjusted into the first cell of Isam, skips 2 bits in Npack and
puts the next 5 bits into the second cell of the Isam array. This
pattern of get 5 bits and skip 2 is repeated until 120 Isam cells
contain right-adjusted 5-bit bytes of data with lead zeroes. (The
final skip of 2 bits is meaningless.) The form is similar to:

Decode (847,915, Npack) (Isam(I),I=1,120)
915 Format (7X,120(I5,2X))

(However, this Decode statement is not valid at NCAR because our Decode
is limited to no more than 150 characters. Thus, six Decode statements

would actually have to be used.)
d. Call Sbytes (Npack,Isam,Iskip,nbits,nskip,iter)

This precisely reverses the direction of the data flow in Gbytes

and does not change other bits in the Npack array.

ClibPDF - wwvfastio.com R

http://www.fastio.com/

16 . b W

In the above examples, nbits has a maximum size of 60 bits, the machine
word length. Nskip may be greater than 60 if desired. Iskip must now be
less than 60 bits at NCAR.

Note that the routines Gbytes, etc. consider the information to be in
one string of bits in memory; they'don't care if some bytes of data must
be unpacked from two successive memory words. The examples show that when
a given call to Sbyte or Sbytes is used to pack data, the same statement,
only with the name chanéed to Gbyte or Gbytes, will unpack the information.

If one has a listing of the calls to Sbyte and Sbytes that packed data
on a computer with one word length, khe comparable calls for another machine
can quickly be written by modifying the starting Npack address and the
initial iskip as necessary.

These routines are written up in the NCAR Fortran computing manual, where

more examples are presented. Subroutine listings are in Appendicies A, F, and G.

Timing Comparisons

We will show a couple of comparisons between Gbytes statements and

Decode statements that do precisely the same thing:
a. Decode (100,917, Npack) (Isam(I),I=1,20)
917 Format (20R5)
This is duplicated by:
Call Gbytes (Npack,Isam,0,30,0,20)

The average CDC 6600 time for each Isam cell filled is 87 us for the
Decode and 22 us for Gbytes. A

b. Decode (104,918, Npack) (Isam(I),I=1,20)
918 Format (4X,20(R3,2X))
This is duplicated by:
Call Gbytes (Npack,Isam,24,18,12,20)
The average time for each Isam cell filled is 260 us for the Decode

and 22 us for Gbytes.

Examples of uses for Sbytes/Gbytes

a. A 7-track copy of a 9-track tape with New Zealand upper air data

ClibPD www . fastio.com

http://www.fastio.com/

ClibPDF - wyw fastio.com

17

was obtained. It had 4- and 8-bit characters of data. Gbytes was
used to put each character into an individual cell so that the

data could be easily processed.

A tape was received having binary floating point data from a machine
with a word length of 48 bits. Gbytes was used to put each 48-bit
word in an NCAR 60-bit word. Then a small machine language routine
was written to convert from the 48-bit floating point word to

the CDC 6600 floating point word.

A tape was received with data allowing one to compare standard
rawinsonde winds with winds derived from precisison radar tracking
of the same balloon. The data was in blocked card image BCD
records. But each successive character on the cards was actually
an octal character from a 36-bit, IBM 7094 floating point word.
Gbytes was used to put each character in a cell where the digits
0-7 were converted to binary 0-7. Then Sbytes was used to make

a string of bits containing successive octal digits in 3 bits each.
Gbytes was then used in three separate calls to put the signs,
exponents, and fractions of the 36-bit floating point words into
three arrays. These arrays were then combined with a Fortran
arithmetic statement to give an array with the equivalent CDC 6600

floating point words.

Navy sea surface temperature data is packed into 16 bits for each

grid point. Gbytes makes it easy to unpack such data.

Suppose that many numbers that can be represented by the decimal
digits + XXXX.XX will be output on the 6600 for use on a 32-bit
machine. One can multiply the numbers by 100, then add 1,000,000

and convert to fixed point numbers that will have a range of 1 to
1,999,999. These numbers are containéd within 21 bits. They

could be packed (by Sbytes) into successive 21-bit bytes and unpacked
by a Gbytes program written for the other machine. However, it is
not too wasteful in volume to pack them into successive 32-bit bytes
so that they will be available as fixed point numbers in the 32-bit

machine without unpacking.

In one case, the numbers were of this range, but it was also de-
sirable to have them in floating point form for the 32-bit machine.

Since the fixed point numbers didn't extend into the range of the

http://www.fastio.com/

ClibPD

18

exponent, a common exponent could be used which is appropriate
when the binary point is on the right hand side of the word.

This exponent was put into each word prior to packing by Sbytes.

f. A blocked tape was received in which the length of each logical
record was 72 characters. Since there are ten characters in our
60-bit word, one can't unblock such records by just moving whole
words. We wrote a routine (UZBLOK) that uses Gbytes to un-
block such a tape when the length of a logical record is any

fixed number of bits.

g. When short variable length logical records have been blocked
into longer records on a machine with a different word length,
Gbytes can be used to unblock the records. In Section 5.7 we
will discuss the routine RPTINX that is used for this purpose when
the data has been blocked by a routine called RPTOUT which will

be discussed.

* h. Sbytes and Gbytes is used in the packing and unpacking of many

types of data such as rawinsonde data.

5.3 Input/Output problems

Every system needs a general purpose I/0 routine like the Fortran
Buffer In, Buffer Out statements that allow one to read (or write) reason-
able length records into (or from) a buffer in memory. With odd parity
(binary) records, a bit string is delivered into memory that is the same as
the bit string on tape (or other storage device) and the same as existed
in the output computer. With even parity (BCD) tape reads, it is desirable
to be able to read in a bit string the same as the tape code. The reason is
Fhat external BCD code is often more convenient to work with, and there are
often at least some characters that are invalid, so that Decode statements
cannot be used. Data with overpunches is more convenient to use in exter-
nal BCD. For awhile NCAR didn't have a one-to-one conversion from external
code to internal code, so certain overpunch data was lost if code conversion
was used. However, many systems have an automatic character convgrsion that

is impossible to bypass.

We feel that systems should be able to read BCD or binary records up
to 1000 60-bit words in length, and longer if possible. Because of restric-

tions in othef sfstems and considerations of buffer sizes and of good tape

wyw . fastio.com

http://www.fastio.com/

ClibPDF -

WAV . TAST

19

practice (records not too short or too long), we generally limit output
data record lengths to be under 512 words. The maximum length of Rptout

physical records is 354 words.

NCAR cannot write or read 9-track tapes as yet.

5.4 RDTAPE, WRTAPE, IQWAIT

The RDTAPE routines are used at NCAR for reading and writing records
on tapes. In installations having BUFFER IN operations available, the
RDTAPE simulator (Appendix B) may be used to run with programs requiring
RDTAPE. At other installations it is necessary to write RDTAPE simulators
or to replace the RDTAPE, WRTAPE, and I@WAIT calls with similar routines.

The routines operate as follows:

a. CALL RDTAPE (NUNIT, M@PDE, NTYPE, BUF, LENGTH). Input a tape
record from unit "NUNIT" in mode "M@DE" beginning at the core
location specified by the address of "BUF" and continuing in
consecutive core locations up to a maximum of "LENGTH" words.
If the actual tape records are longer than "LENGTH", the entire

record is read over but the excess words are not transferred into

core.
M@DE: 0 = even parity no character conversion
= odd parity no character conversion
= even parity, convert from external BCD
to internal machine BCD
NTYPE: This argument is used to specify a type of

record when records can appear on tape in
different forms (such as whether the records
were written by the home computer).

Some other special options such as suppression
of re-read after parity are available at NCAR.
Note that the call to RDTAPE or WRTAPE (see below) initiates the I/O operation

and IPWAIT must be called to ensure that the data transfer is complete.

b. CALL I@WAIT (NUNIT, NSTATUS, NWPRDS). Wait for completion of the
previous RDTAPE or WRTAPE call on unit "NUNIT". NSTATUS will
return the status of the RDTAPE or WRTAPE operation and ''NW@RDS"
returns the actual number of words read or written. The NCAR sys-

tem checks for a file mark first, then for end of tape, and then

http://www.fastio.com/

ClibPD

for parity.

NSTATUS: operation successful

parity error

0

1 - file mark read

2

3 - passed over EQT mark

c. CALL WRTAPE (NUNIT, M@DE, NTYPE, BUF, LENGTH)

Write a record where the arguments correspond to RDTAPE, and

"LENGTH" specifies the actual number of words to write.

5.5 Tape copy program

A tape copy program is described in the NCAR Library Routines Manual.
This Fortran program uses control card input to specify how many records or
files are to be copied. The user can also look at each report in a subrou-

tine, and then decide whether or not to copy the report to the output tape.

5.6 Blocking/Unblocking of short variable length data records

5.6.1 Introduction

RPTOUT is used to pack short variable length logical records into
larger physical records on tape. The records are under checksum control.
Logical records may be 1 to 352 words long, but the first 12 bits of each
logical record must be reserved for use by RPTOUT. RPTIN is used to read
logical records from a tape made by RPTOUT. The input or output of blocked
records can be active on several tapes at once, but each active tape must
have a separate 360-word buffer that is dimensioned in the calling progrém.
Each buffer will hold a physical record that is being blocked in prepara-
tion for a tape write (Rptout) or being unblocked after a tape read (Rptin).
There is enough information in the first few words of each buffer to give
Rptout/Rptiﬂ sufficient information on the status of the blocking/unblocking
from each I/0 unit. Whenever Rptout gets a report that will not fit in |
the remainder of the current buffer, it writes a record and starts a new

buffer with the report. Rptin initiates a tape read whenever it finishes

unpacking a buffer.

www . fastio.com

http://www.fastio.com/

21

We use RPTOUT to store many types of short reports such as rawinsonde
data, surface data, and card image data (where the character code might be
either internal or external BCD). By using RPTOUT to block observed upper
air data from the weather centrals, the tape volume has usually been cut in

half without changing the format of each report.

Data is obtained by calling RPTIN to unblock one record at a time
from the physical records. Then the record can be decoded by using ordinary

character, bit, or word decoding logic as appropriate.

Note that the first 12 bits of each logical record are used for a word-

count of the report. Data put there will be erased.

On a machine with a different word length, the routine Gbytes (written
for that machine) can be used to unblock a Rptout record written by the
NCAR computer (see RptinX, Section 5.7). Once the report is unblocked it
may then be written out by Rptout on that computer using a number of words

that will contain the whole bit string in the unblocked report.

5.6.2 Layout of a physical record made by Rptout

Example layout of a physical record when the record has only three
logical records with lengths of 18, 5 and 32 words respectively. The

record then has the following form:

wordcount = 57 checksum
count = 18 count = 5 count = 32
1st logical record 2nd logical record ;;d logical record
A 4
/ 4 /

with the detailed format:

Word 1: Has a right adjusted binary count of the words in the physical

record. In this example the count is 1 + 18 + 5 + 32 + 1 = 57.

Word 2: The leftmost 12 bits contain a count of 18 in binary saying

that there are 18 words of data in the first logical record.

Words 2 The remainder of word 2 and all of words 3-19 contain the data

through 19: in this logical record.

ClibPDF - wwwy. fastio.com

http://www.fastio.com/

ClibPD

Word 20:

Words 20

through 24:

Word 25:

Words 25

through 56:

Word 57:

22

Contains a count of 5 in the first 12 bits.
The data in the second logical record.
Contains a count of 32 in the first 12 bits.
The data in the third logical record.

Is a checksum of the data in words 1 through 56. This sum
is made by the equivalent of an add-and-carry logical instruc-

tion.

If Rptout is run on another computer, the record layout will be the same

as above;

however, the wordcounts apply to each machine which may have

word sizes of 32, 36, 48, 60, etc. bits. The NCAR CDC 6600/7600 have word
sizes of 60 bits.

5.6.3 Method to use Rptin/Rptout

In general, a program reads or writes the Rptout logical records as if

they are not blocked. The exceptions to this are as follows:

a.

A special buffer dimensioned by 360 must be set aside by the
calling program for use by RPTIN/RPTOUT in blocking and unblocking

the logical records (reports). There must be a separate buffer for

each unit in use at the same time.
There is no backspace command that applies to the logical records.

Before putting an end file on a tape, or otherwise terminating
writes on a tape, a special RPTOUT command with JL = 2 is required
(see below) to output the last buffer of data onto the tape. This

also sets Nbuf(l) to zero.

After a rewind or before using an NBUF buffer for another tape,
NBUF(l) must be set to zero, and the counters in NBUF may be re=-

initialized if desired.

We will now give more details on how to read and write RPTOUT logical,

recoras .

www . fastio.com

http://www.fastio.com/

ClibPDF - v

23

5.6.3.1 To write out a logical record

CALL RPT@UT (NUNIT,NBUF,L@CRPT,NWDS,JL)

The calling program provides the data in the arguments labelled
in; the subroutine puts data in the arguments labelled out. For

this subroutine we have:

CALL RPTOUT (in,work-out,in,in,in,)
NUNIT Tape numbers 1-10 (not 5 or 6)

NBUF An array in which the records are built:
Dimension NBUF(360)

NBUF(1) Must be 0O before the first write on a
tape. RPTOUT will start a record when
it sees the 0.

NBUF(2-4) Must be cleared if you need to reinitialize
the counters.

NBUF(2) Will have a count of logical records output.

NBUF(3) Will have a count of physical records
output.

NBUF(4) Will be a count of the words output. But

words in reports = NBUF(4) - 2*NBUF(3).

LOCRPT Location of the report for output. The first
12 bits of the report will be used by RPTOUT
and RPTIN. Any data contained in the first 12
bits of the first word will be destroyed.

NWDS Number of words in the report.

JL 0, output this report.

2, no report to output; output the reports
in NBUF onto the tape. This is used to
output the last buffer onto the tape.
This also sets NBUF(1l) to O.

5.6.3.2 RPTOUT error messages

a. Bad physical write, unit, physical record, length, status.
This usually indicates some problems with the physical tape,
tape drive, or machine, or tape writes are being attempted

past the end of tape marker.

vivw . fastio.com

http://www.fastio.com/

24

b. Bad logical length, unit,.logical record #, length. The user

tried to write either a zero-length record or a record longer

than 352 words.

'5.6.3.3 To read a logical record

CALL RPTIN (KUNIT,KBUF,

KLAC,KWDS ,JJ ,KLMAX, JE@F)

The flow of data into or out of the subroutine is:

CALL RPTIN (in,work=-in,

out,out,in,in,out)

KUNIT Tape 1-10 (not 5 or 6)
KBUF An array to use for unpacking the records.
Dimension KBUF(360), KBUF(1) must be set to

0 before the first read. RPTIN will start
a new read when it sees the 0.

KBUF(2-6) Must

be cleared when desired.

KBUF(2) Will have a count of logical records read.
KBUF(3) Will have a count of physical records read.
KBUF(4) Will have a count of words read from the tape.
KBUF(5) Will have the words in this physical record.
KBUF(6) Will be the same as JEOF.

KLOC Array to put report in.

KWDS The total number of words in this report. Note

that this

may be greater than KLMAX.

JJ = 1, return only two words of this report and
do not move on to the next report (except
for EQOF case).

= 10, return full report up to a maximum of
KLMAX words and position on next report.

This is the option normally used.
KLMAX Maximum number of words in a report to be moved
to KLOC.
JEQF = 0, good report returned.

1, EOF

2, report returned from a record with a bad

checksum.

ClibPD www . fastio.com

http://www.fastio.com/

ClibPD

WAV

\SUI0.COM S

.25

5.6.3.4 RPTIN error messages

a. Short physical record, unit, physical record, length,
expected length, status. Bad tape read or records were not
created by RPTOUT. This diagnostic often simply indicates

noise in a record gap.

b. Bad physical length, unit, physical record, length, expected
length, status. Bad tape read or records were not created

by RPTOUT.

c. Bad checksum, unit, physical record, length, expected length,

status. Bad tape read or records were not created by RPTOUT.

d. Bad logical length, unit, logical record, length. Probably

the result of one of the previous errors.

e. This is not a RPTIN record, first word of the physical record
(octal). Indicates problems which might cause execution errors

if the record were processed. This current record is bypassed.

5.7 Unblock variable length RPTOUT records from another machine

We have written the program RPTINX (Rptin simulator) to make it easier
for people with another computer to unblock our RPTOUT records that are
output from a 60-bit machine. RPTINX will make it easy to exchange RPTOUT

data between any two machines of reasonable capacity.

To use RPTINX, Gbytes must be available fo he user's computer. The
word lengths of the output computer and the usef;s; computer are specified
in the program. Each call to Rptinx delivers one unblocked logical record
to the calling program. The word count returned is a count of user words
that is sufficiently large to contain the entire logical record. The first
12 bits in the report will still contain the word count from the originating
machine. The user can either directly process the report, or use RPTOUT on

his own machine to reblock it into a form more efficient to use repeatedly.

Rptinx assumes that the user's machine word length is at least 12
bits long. The version listed in the appendix does not check the checksum.
To check our 60-bit checksum on a 32-bit machine, one would need to fold
our 60-bit sum to become a 30-bit sum, and then use Gbytes to obtain 30-bit

bytes as an aid in preparing a 30-bit checksum.

http://www.fastio.com/

ClibPD

26

Note that buffer lengtﬁs must be defined large enough to contain the
longest record written by the machine which created the RPTOUT records. In
RPTOUT, the longest record output is six fewer words than the buffer length.
Thus if the originating computer had a buffer length of 360 60-bit words,
the length required to read the data on a 32-bit machine would be the num-
ber of 32-bit words necessary to contain 354 (360 minus 6) 60-bit words plus
six words used for accounting by RPTINX. Thus a total of 670 32-bit words

would be needed.

RPTIN and RPTINX wére compared to show central processor timing diffe-
rences on the CDC 6600. Both routines read the same 1000 logical records
which varied in length from 10 to 50 words. This involved reading 89 physical
records and a total of 30,178 words. There were a total of 30,000 words in
all of the logical records. RPTIN required 194 ms to read these records
including the end of file. RPTINX required 867 ms. Each of these times
included 67 ms used in the tape reading routine or an average of 740 us

per physical record. The average time per 60-bit word for RPTIN is thus

- 6.5 yus including 2.2 us for input; the average time per word for RPTINX is

28.9 us including 2.2 us for input. The checksums on the records were
checked by RPTIN, but not by RPTINX.

5.8 How to process RPTOUT data on another machine

Suppose that information such as RAOB data is received on tape where
thé individual variable length reports have been blocked into longer records
using the routine RPTOUT. The layout of a record (always odd parity) from
RPTOUT was shown in section 5.6.2. First the record needs to be unblocked;
in this process one report at a time is put into a separate buffer so that

it can be decoded for use in calculations. The unblocking is done as follows:

a. On a CDC 6400/6600/7600 use our routines RPTIN (Appendix C-Z); and
the RDTAPE simulator (Appendix B) that is used by RPTIN. Each

call to RPTIN will return one unblocked report into a buffer.

b. On a machine with a different word length, use RPTINX (Appendix D).
See section 5.7 for a description of how to use RPTINX. The
routine RPTINX uses the RDTAPE simulator (Appendix B) to input the
physical records as necessary, and it uses GBYTES written for

your machine to unblock each report. Each call to RPTINX will

www . fastio.com

http://www.fastio.com/

27

return one unblocked report into a buffer. The routine RPTOUT
(Appendix C-1) may be used to reblock the data into a format
that can be unblocked by RPTIN and is thus more efficient to

use repeatedly.
The functions of the RDTAPE simulator are described in Section 5.4.

Unpacking a report

Once a report has been unblocked, it is a string of bits in memory
that is ready to be unpacked to use for calculations. If the data is in a
packed binary format, it is most convenient to use the routine GBYTES to
unpack it. Sections 4.3 and 4.4 give some of the reasons for using packed

binary formats, and Section 5.2 describes the use of GBYTES and gives examples.

Appendix E contains an example program (INRAB) that uses RPTIN to
unblock a RAOB and then uses GBYTES to unpack it.

It is simple to adapt the program INRAB for use on machines with
different word lengths. Cards are available for IBM-360/370 systems. The
subroutine GBYTES has been written for these machines and for the Univac 1108.
We are hoping to have GBYTES routines available for other machines in the

near future.

5.9 Sorting Routines

5.9.1 SORTUU: Fortran sort - merge of variable length unblocked records

This program assumes that the records are unblocked on the input tape
‘(Itape). The SORT subroutine reads logical records from the input tape and
writes sorted strings alternately onto tapes NT1 and NT2. The MERGE subrou-
tine merges strings back and forth between tapes (NT1l, NT2) and (NT3, NT4) until
the string count is one. The final output tape unit number will be NTl or
NT3 and will be printed. Information is also printed on the number of reports,

words,and strings that are input and output.

The routines RDTAPE, WRTAPE and IOWAIT are used for input and output of

records.

The subroutines GKEY (Irep,Key) must be provided to look at a report
starting at Irep, and return a sort key starting in cell Key. The number of

words used for the sort key must correspond to the constant NK, and must not

ClibPDF - wwyy . fastio.com

http://www.fastio.com/

ClibPD

28

exceed 10 unless the dimensions of LKey, Key 1, and Key 2 are changed. The
first word of all sort keys must be positive. An integer comparison is used
to determine sort order based on sort key words 2-10. Thus, a word is

taken as negative if the sign bit is om.

How to use
a. Obtain a copy of the SORTUU program. The following changes in

the cards are needed:

Dimension IREP1(LWDS), NARRAY(LENGTH)

MODE = mode of tape. See writeup of RDTAPE in 5.4.

TYPE = Q) for systems records.

LWDS = maximum length of a logical record.

LENGTH = gize of work area for the sort. The sort is more

efficient with a long work area unless the input
records are short and nearly in sort. It should

normally be set between 20,000 and 30,000 words long.
NK = number of words in the sort key.
b. Write the subroutine GKEY.

To merge two sorted tapes

Mount the tapes on NTl and NT2. Each must have an End of File. The
tape ITAPE is not used and need not be mounted. Set KPASS = 1 in SORTUU.
If the two tapes were not in‘sort, a message will be printed saying that the
two tapes cannot be merged in one pass: the tapes NT1 and NT2 will not be

written on.

5.9.2 SORTBB: Fortran sort - merge of variable length blocked records

This program assumes that the subroutine RPTOUT was used to block the
variable length records onto the input tape (Itape). The SORTB subroutine
reads logical records from the input tape and writes sorted strings alter-
nately onto tapes NT1 and NT2. The MERGEB subroutine merges strings back
and forth between tapes (NT1l, NT2) and (NT3, NT4) until the string count 1s

_one. The final output tape number will be NT1 or NT3 and will be printed.

Information is also printed on the number of reports, words, and strings

that are input and output.

www . fastio.com

http://www.fastio.com/

29

The RPTOUT-RPTIN subroutine package is used. These in turn use the
routines RDTAPE, WRTAPE, and IOWAIT.

The subroutine GKEY (Irep, Key) must be provided to look at a report
starting at Irep, and to return a sort key starting in cell Key. The number
of words used for the sort key must correspond to the constant NK, and must
not exceed 10 unless the dimensions of LKey, Key 1 and Key 2 are changed.
The first word of all sort keys must be positive. An integer comparison

is used for determining sort order when using sort key words 2-10.
How to use

a. Obtain a copy of the SORIBB program. The following changes in

the cards are needed:

LWDS = maximum length of a logical record

LENGTH = size of work area for the sort. The sort is more
efficient with a medium length work area. The length
should usually be shorter if the data are nearly in
sort. It should normally be set between 15,000 and
25,000 words long.

NK = number of words in the sort key.

Dimension IREP1(LWDS), IREP2(LWDS), NARRAY(LENGTH)
b. Write the subroutine GKEY.

To merge two sorted tapes

Mount the tapes on NT1 and NT2. Each must have an End of File. The
tape Itape is not used and need not be mounted. Set KPASS = 1 in SORTBB.
If the two tapes were not in sort, a message will be printed saying that

the two tapes cannot be merged in one pass: the tapes NTl and NT2 will not

be written on.

6. The case for checksums on stored computer data

To indicate the types of errors that can be introduced into computer
data which cannot be detected by parity bit checking on magnetic tape, we
will give three examples of errors that have occurred in the input/output
of data. A number of other error cases have occurred, many of which could

not be as accurately diagnosed as to what really did happen. Compared to

ClibPDF - www.fastio.com

http://www.fastio.com/

30

the number of cases in which the input and output of data is reliable, the
number of failure cases is certainly low. However, even a small number of
errors is usually intolerable unless one knows that an error has occurred.
Finally, we will end with some additional discussion as to why it is
imperative that at least the primary data banks be kept under strict check-

sum control by the central arithmetic unit.

Example 1

We received three tapes from the Bureau of Commercial Fisheries that
gave grid analyses of monthly mean Pacific Ocean sea surface temperatures.
They used a 48-bit word machine to copy the data from their tapes to ours.
The format of the data was also patterned after a 48-bit word, each of

which gave the data at one grid point.

In processing the data, curve fitting on the grid was done to check
for incorrect data points. On the basis of these checks, about 320 correc-

tions were made.

When the Bureau of Commercial Fisheries compared these corrections with
a print of their tape, they found that our corrected values corresponded
closely with their printout. They also found that their values were exactly
256 (2.56°C) less than the uncorrected values which we had also listed. This
suggests that the 9th bit from the right of some 48-bit words was periodically
sticking on. In a few words,‘a different bit that set the sign of the value

negative was incorrectly turned on.

By considering tape dumps and the word lengths of the computers, it
became almost certain that the errors were made during the copy on the
48-bit machine. Perhaps the register through which the data passed on the
way from memory to the tape drive was introducing the bit. However, even
this theory isn't completely satisfying because the errors seem to show

some preference for certain words within the physical records.

While it is not clear as to exactly which components of the hardware
failed, it is clear that tape parity checking is of no help in detecting
errors of this type that occur before the data is put on the tape. However,
a checksum included in the format would made it possible to detect the

‘records that do have such errors.

ClibPD www . fastio.com

http://www.fastio.com/

ClibPDF -

31

Example 2
The subroutines (RPTOUT and RPTIN) that block and unblock logical

records were discussed in 5.6; these routines enable one to block short,
variable length reports onto tape. The blocked records, which may contain
data in either binary or BCD form, are on tape as odd parity records that

include a checksum of the entire record.

In this example of errors during the input of data, a blocked record
was read with no tape parity problems, but there was a checksum error. The
tape drive had correctly read 78 bits, them it dropped 6 bits of octal 01,
then it~read 18 bits, then it dropped 6 bits of octal 01, and finally it
read the rest of the approximately 20,000 bits in the record. Since the
two 6-bit bytes that it dropped were identical in value, it is obvious
that the horizontal tape parity would still check out all right. However,
the data was essentially destroyed by being partly missing, and also by
being shifted badly out of phase.

Example 3

On another computer, we once had a period where there was crosstalk
between the tape channels and the microfilm output device. It turned out
that in certain cases, the microfilm device would steal 12 bits of the
data going to a tape drive. This caused all sorts of problems in data
sets until the machine problem was diagnosed and the hardware fixed. It
was especially bad since some of the information being processed was in

even parity (BCD) records which were not under checksum control.

These examples should make it clear that it is very important, es-
pecially in the main data libraries, to keep information under a checksum
control that is computed and verified by the central processor. Even if
the hardware were much more reliable than it is, ﬁhe checksums would still
be very important since as multiprogramming capability is introduced in the
newer computers (and the multiprogramming capability is very desirable),
the software systems necessarily become more complex. Since these systems
are both complex and changing, the possibility increases that errors
may be introduced by software. We should also note the tendency for an
increase of hardware between the I/0 device and the central computer., This
increase is often in the form of peripheral computers which feed the fast

central computer. This, too, is often a desirable trend, but it does increase

vy fastio.com

http://www.fastio.com/

32

the possibility of errors.

We should also note cha; the checksums will help spot some program
errors where the input/output buffering scheme is incorrect. This type
of error was probably made on tapes that we received having northern
hemisphere grids of weather data in a BCD format. Our error detection
programs found a few grids that were obviously one type of data in the
first random percentage of the grid, followed by another type of data in

the rest.

A checksum can be easily added to any existing binary format. The
question is how to protect information that one wants to keep in a BCD
format. There is no really satisfactory answer to this question. We usually
keep this data in binary mode with a binary checksum on tapes. But since
the character coding is often in internal BCD code which is often different
for difference machines, it is somewhat more difficult for a programmer to
use the data on another machine. However, to send the data it can be
recopied into BCD parity and the checksum dropped or an expensive BCD
checksum could be calculated. Actually, with a simple subroutine it isn't
very difficult to change the character codes from one set to another, thus
the data could be sent in binary tape mode (odd parity) with a binary check-

sum included.

It is regrettable that even parity (BCD mode) ever got started on tapes.
One minor irritation that this caused was that since a character code of
00 octal could not be used in even parity, a zero character had to be assigned
another non-zero code (12 octal). However, a more important problem which
resulted from the illegal 00 octal code in BCD parity was that binary infor-
mation could not be included in even parity records. No standardization
has been achieved with the even parity records that could not have been
achieved as well or better with odd parity, where binary checksums can be
recorded. It is only the standardization of the external (tape) BCD
character set that has made it convenient for exchanging many types of data;
this standardization could have been achieved just as well with odd parity

»

tapes as noted in section 2.2.

" We should insure that at least the major data sets are stored under a
secure checksum control. In most cases this will probably mean that the

records are written in odd parity mode with a binary checksum.

ClibPD www . fastio.com

http://www.fastio.com/

ClibPD

WAV

33

7. Guidelines for the exchange of information between computers

The following standards are suggested for the exchange of meteorological

data between computers.

7.1 Magnetic tape: 1/2-inch standard tape

a. 7 channel tape: wuse 556 or 800 BPI.
b. 9 channel tape: use 800 or 1600 BPI.

There is some preference for 800 BPI because drives that can read at

1600 BPI aren't as common yet.

7.2 Tape label records: encourage them.

The first record is a standard tape label record and is followed by an

end of file mark, often called a tape mark.

a. 7 channel tape--Label is usually even parity and standard external
BCD. However, when the tape data is in odd parity, there is an
advantage to having the label in odd parity also. The character
code should then still be in external BCD or be specified. Some
international standards call for all character data to be in odd
parity; we don't know of any operating systems that would easily

handle this practice.

b. 9 channel tape--Label is in EBCDIC or ASCII characters. Prefer
EBCDIC because most machines use it. (Apparently most IBM systems

use EBCDIC.) Certain writeups on standards still specify ASCII.

7.3 File structure on a tape

There may be more than éne file of data on a taﬁe. The last file of
data should always be followed by at least two EOF (end of file) marks.
Other files are separated by only one mark. The EOF's are the standard
hardware EOF marks and not software labels to simulate these. The use of

special end of file label records at the end of each file should be strongly

discouraged.

7.4 Mixed mode tapes

With the possible exception of the initial label record, all the data

on a tape should be written in one mode--either even or odd parity. Thus on

\STI0.COM

http://www.fastio.com/

34

an odd parity tape, there must not be any even parity label records after

the initial label record.

7.5 Record length

The length of each physical record should not exceed about 5000 characters.
If the logical records are longer than this, they should be segmented. Very
short logical records should normally be blocked together into records at
least 1000 characters long. Some computer systems now have trouble reading
physical records that are not an even number of 8-bit words in length. This
is an unreasonable hardware difficulty and should be fixed. It has been
noted that if physical records are a multiple of 360 bits in length, they
are an even number of words on machines with word lengths of 6, 8, 12, 18,
24, 36, 48, or 60 bits. The IBM 360 is an 8-bit machine for I/O purposes.’

Some of the current standards indicate a maximum record length of 2048
characters. This length now seems unreasonably short and would demand

splitting of analyses such as those from the National Meteorological Center.

7.6 Blocking shorter records together

When all blocked logical records in a file are the same length, no indi-
cation of that uniform length is required within the file. The last physical

record in a block should not be padded out to be the standard length.

When variable length records are blocked, the length of each record
(in characters, bytes, or words) shall be recorded as the first field in each
reéord. This field shall be counted as part of the length of the record.
The field length may be expressed as a decimal or binary number. But note

that a binary number should not be used on an even parity tape. -

At NCAR, the first 12 bits in each iogical record are used for a binary
word count and the physical records have a checksum at the end. In section

5.6.1 we discussed our blocking routine called RPTOUT.

7.7 Data structure within a logical record

Much of the satellite data, grid analyses, and other data will be avai-
lable only in packed binary form. Computer routines and concepts are
available which make the use of such data very easy on most binary machines.
The floating point word structure of any one machine should generally not

be used for data exchange. Use positive integers packed into a specified

ClibPD www . fastio.com

http://www.fastio.com/

35

number of bits. Sign-magnitude integers are permitted, but are not as
efficient as adding a bias to make all numbers positive. Thus, to pack num-
bers in the range of -99 to +99, add 100 and then pack each number into 8

or more bits. Often one can pack arrays of numbers by first subtracting

a base value (the minimum value less an epsilon) to insure positive numbers
and to reduce the size of them. Then each resulting number is divided by
2n, where the scaling facter n is chosen so that the range of numbers will
fit into the number of bits chosen to hold each packed number. The base
value and the scaling factor should be packed with the data unless they are
always constant. An unpacked number may be reconstructed according to

the equation:
Value = unpacked -* 2" + B

where B is the base value, and n is the scaling factor. If the binary point
is assumed to the left of the packed number, the above equation must have
another power of two factor to account for this fact. Some fields of data
may have such a large range of values that a floating point representation
must be used. Floating point numbers should be represented by two positive
integers where one of the positive integers is the biased exponent and the
other is the fraction. The bias on the fraction can be used to indicate the

sign of the number, or the sign could be given separately.

Character data may be formatted into 4-, 6-, or 8-bit characters. Each
digit should be recorded in its standard code and should not contain addi-
tional bits that are included to change the interpretation of the digit.
The sign of each data element should be given in a separate character to
the left of the digits and not to the right (or attached to the lower order

digit) which are the practices in some computer systems.

7.8 Documentation

A detailed description of the format and data content of each data set
must be available. This should include information about the volume of data

as well as any necessary comments on data sources and data problems.

8. Word structure of various computers

This section shows how numbers are represented in fixed point form and

in floating pepint form on various machines.

ClibPDF - www.fastio.com

http://www.fastio.com/

ClibPD

36

8.1 CDC 6400/6600/7600 (60-bit words, ones complement)

a.

number

The floating point word format has one bit for sign, 1l bits for
biased exponent, 48 bits for integer coefficient (normalized to

the left, binary point to the right).

The exponent bias is 2000g. The biased exponent of 2 cam range
from 0 to 3777. Numbers from about 3.13E-294 to 1.26E+322 can
be represented in this format. Examples for exponents -1, -0,

0, 1 are:

2 is coded as 1776
270 mo 1777
2 " 2000
2 " 2001

Examples of numbers are given in octal for the 60-bit words. The
rather low exponents in the floating point words arise because the

binary point is to the right. A dash means that the same digits

are repeated.

fixed floating
positive negative positive negative
~ 0---04 7===73 172240--0 605537--7
0---01 7-=-=76 172040--0 605737-=7

0---00 7-==77 RS 0 y SR

8.2 CDC 1604/3400/3600/3800 (48-bit words, ones complement)

a‘

www . fastio.com

The floating point word format has ome bit for sign, 11 bits for

biased exponent, and 36 bits for fraction (normalized to the left,

binary point to the left).

The exponent bias is 20008. The biased exponent of 2 can range
from O to 3777 as on the CDC 6600. The only change from the
CDC 6600 is that =0 is sensed as +0 and is therefore biased by
2000 rather than 1777. Thus the biased exponent 1777 is never used.

Examples of numbers are given in octal for the 48-bit words. A

dash means that the same digits are repeated.

http://www.fastio.com/

ClibPD

number

37

fixed ' floating
positive negative positive negative
0---04 7--=73 200340--0 577437-~7
0--=01 7---76 200140--0 577637-=7
0---00 7-==77 Om—mmmeem 0 Jmm———— 7

8.3 1IBM 360/370, Spectra 70 (32 or 64-bit words)

a.

number

The floating point word format has 1 bit for sign, 7 bits for
biased exponent (power of 16), 24 bits for the fraction (or 56
bits in long precision format). The fraction is normalized to the
left, but since the exponent is in powers of 16, the normalization
only insures that there is a bit in at least one of the 4 high-

order bits of the fractiom.

The exponent bias is 64;5. The biased range of powers of 16 is
0—12710 giving a power of 10 range from about -78 to +75.

Negative fixed point numbers are in twos complement notation
(complement and add one). Negative floating point numbers are

not complemented, but the sign bit is a 1.

Examples of numbers given in binary for 32 bit words. A dash

means the same bits are continued.

floating
positive negative
positive negative S bit 7 bits 24 bits
0-0100 1--1100 0 1000001 01000--0)same only
0-0001 1--1111 0 1000001 00010--0 }sign bit on
0-0000 none 0 0000000 00000--0

8.4 IBM 709/7094 (36-bit words, sign magnitude)

a.

wivw.fastio.com

The floating point word format has 1 bit for sign, 8 bits for
power of 2 biased exponent, 27 bits for the fraction (binary point

on the left, number is normalized to the left).

The exponent bias is 128735 = 200g. Thus:

2 is coded as 1778
20 " 2004
" 201g

http://www.fastio.com/

ClibPD

38

c. Examples of numbers given in octal for the 36-bit words. A dash
means that the same digits are repeated.
fixed floating
number . positive negative positive negative
4 0===04 same . 20340--0 same
1 0--~01 only sign 20140--0 only sign
0 0---00 bit is on 00000--0 bit is on

8.5 UNIVAC 1108 (36-bit word, ones complement)

The word structure is exactly like that of the IBM 7094 except that
negative numbers are complemented. Thus:

fixed point -1 = 77--==76
floating point -1 = 57637-76

www . fastio.com

http://www.fastio.com/

39
' Appendix A
GBYTE, GBYTES, SBYTE, SBYTES
These are machine language listings of GBYTE, GBYTES, SBYTE, SBYTES written

at NCAR for the CDC 6400/6600/7600 systems. These assume that the calling argument
addresses are in the B-registers.

ENTRY GBYTE,GAYTES

C £ALL GAYTE (SOURCE,CESY,0FFSET,BYTE SIZE} ENTRY SBYTE,SAYTES

€ CaLL GAYTES (SOURCE,ODEST,0FFSET,AYTSIZE,SKIP,L00®) c CALL SOYTE (DESY,SOURCE,OFFSET, BYTE SIZE
GAYTES COW [} c CALL SBYTES (NEST,SOURCE,OFFSET,AYTESIZE.SXIP,L0CP
Sas GAYTES C THIS ASSUNES CALLING ARG ADCRESSES ARE IN B PEGISTERS
axe xe € ON SOME CDC6408/6600 SYSTEWS THME CON STATEMENTS ARE CALLED OATA
SA6 GBYTE SBYTES comn]
<Al " SA4 S8YTES
s86 X3et «SET YP LOOP COUNTER 8x7 xs
sa2 (1] «GET SKIP A7 sevre
585 x2 «SVAE SKI® SA3 LI
o rEG see 3=t «IF LONG CALL,SET UP LOCP COUNTER
G8YTE cow (] a2 (1] +GET S«1P
see ae sAs x2 +«SAVE SxIp
REG Sa1 81 «GET SQURCE wORO TN X% Jo REG
sa7 82 +WOVE DESTINATION AQORESS ssyre cow e
Sae (1] «GET CALCULATFD OFFSET IN Xa 86 (1)
SAS A «GEY BYTE SIZE In x$ RES Ay 81 «GET 1ST NESTINATION WORD IN X3
sa2 x%-4 +B8238YTE SIZE-1 (SET FOR GEMERATING WaSK) K7 82 «MOVE SOURCE ADORESS
(331 (1] +CONSTANT OF $0 Shs 83 «GET CALCULATED OFFSET IN X&
Loo® sa2 ot +GET SECOND WORD (WKETWER NEEDED OR NMOTH SAS 18 «GET BYTE SIZE IN XS
e x3-x4 +ACTUAL OFFSET s 60-CALC OFFSEY SA2 x5-1 «B2=AYTE SI2E - § (SET FOR GENERATING MASK
sa3 x? +PUT INTH 83 sx3 (1] +CONSTANT OF 60,
»x0 1 SFORM THE S84 xs «BYTE SIZE ALSC IN Ba
axe 82,19 . MASK IN X0 Lon0e sa2 Alet +GET SECOND DEST WORC (WMETHMER NEEDED OR N
1%6 X7-x% «FIND IF RYTE 1S JUST IN WORO 1x7 Y3=x4 «ACTUAL OFFSET s 60 - CALC OFFSET
S8t X6 . BUT INTO B1 s83 X7 +PUF INTO B3
Lxs 83, xe oLINE yP maxx sa3 ar +GET SOURCE wORD
8x1 xgexy «GET THE BYTE ISCLATED IN X1 <81 83-as «FINO IF MYTE IS SPLIT OR NOT
PL BL,RTJST L IF WE ARE OONE,Juws 8x6 x3 +OOUBLE T™AGE
X 1 oIF 8x? x3 « OF SNURCE BYTE T0 X6 AND X7
s83 -8t .« NOY NG #1.NGC
SN3 83-1 . naxe up nxg 1 +FORM ST MASK
Axe A3, X0 . SECOND mASK Ax0 A2,x0 . Inxo
ax2 x2°x0 +ISOLATE 2MD PART OF AYTE Lxe . xy «RIGHT JUSTIFY MaSK
axy -x80xy +CHOP OFF TRASH IN 1ST PART OF BYTC [§1) #1,x0 o AND wWASK
axt x1ex2 +CCHRINE PCRTICNS REY Lxs 81,26 «LINE UP BYTE
PTIST b] X LEFT ,IF SIGN BIT IS TNVOLVED,Juns 8xy -x0e¥1 «MAKE WOLE IN QUYWORD
AXG 81.x1 «RIGHT JUSTIFY THE BYTE 8xe x0°%6 +TAXE CAPE OF ANY SIAN EXTENSION
sTR SA6 34 +STORE IT IN OUTPUT FIELD 8xe X1ex6 +COMBINE TME BYTES
R 86,GAYTE L IF DONE,LEAVE Sae A +STORE THE wORO
s8e o=t «1F NOT DONE CCuNT PL 81,00ME .IF MY 1S NOT NEG, WE ARE QONE
<87 87e1 sxy 8u~-83 «2N0 MASK SIZE = 8.5, - ACTUAL OFFSET
Px7 x3 JFLOAT 6% 3 @ sx3 60 <RETUAN CONSTANT
16 Y exS 1x6 x3-11 «LEFT SHIFT = 6§ - 2N0 WaSK SIZE
Sxi PO «COFFSET » OLD OFFSETs BYTE SIZE oSKIP ST7 se1 -1 oMAKE
N7 xr NOPMALIZE B »xg 1 . 2M0
PYA x4 «FLOAT NEW COFFSET (IM BITS) 2 & Axe 81,0 . nasK
NXG xe «NOR™ & h1.3Y X6 oLEFT SHIFTY
fFr2 L Y2 R4 o0 = 8/8 GET QUOTIENT INX2 Lxy B, X7 . BYTE
ux2 .22 . 812 -x0ex2 «MAKE HOLE IN OUT WORO
Lx2 01,x2 +GET INTEGER QUOTIENT [T34 xgex? +KNOCK OFF TRASH
sa1 x2 JPUT IN 81 (334 x2ex7 +COMBINE
°x2 x2 +REPACK AND SA7 .2 +STORE
x2 x2 o NOR™ALTZE LLLTS P B6,SAYTE . IF DONE,LEAVE
Fre x7ex2 oAb ® A7, GET TNTEGE® POODUCT sms Bbe1 «IF MOT OONE COunT
Fre X6-ub R 3 4 = B°O0 {GET REMATROER [N Xa) s87 n7ey
Uxe e, x4 «GET INTEGER $x3 60
(e 1% 83, x4 . REWATINOE® IN X& 3 NEW CALC OFFSET) 334 x3 JFLOAT 60 = 8
saL age81 +GET NEW wORD IN txe Xeoxs
3 Loce .60 LOoCP | (378 Xee8S +COFFSET = OLD OFFSETs BYTE STZE +SKIP SIZ
LEFY ELTY x5 SCET AYTE SI2E NX7 x7 <MORMALIZE 8
Lxe at,11 <RIGHT JUSTIFY TWE AYTE PG X LFLOAT NEW COFFSET (IN BITS) = &
N ste .60 ST20F 1T N6 x6 oNOR® 4
€80 Fy2 x6/x7 .0 » A/8 LGET QUOTIENT INX2
ux2 81.%2 .
Le2 B1,x2 «GET INTEGER OUOTIENT
st x2 <PUT IN AY
Px2 x2 <REPACK AND
nx2 2 o NORWALIZE
Fre xrex2 Xkt R%Q LGET INTEGER PROOUCT
Fe X6 X4 R s 4 - 840 (GET REMATINDER IN X4
yas 83, xs «GET INTFGE®
e 83, x& . REMAINOE® IN X& = NEW CALC COFFSET)
SAt Atent +GET NEW WOPH IN
JP Loce «50 LoOP
NGC 582 I3 «GET SHIFT CONSTANT
»xe 1
axo 22 ,x9 «FORM THME MASK IN X0
L¥0 83,0 SRIGNT JUSTIFY waSK
s82 Ba=1 «RESEY 82
M 13
END

ClibPDF - www .fastio.com

el

http://www.fastio.com/

ClibPD

10
11

12

13

www . fastio.com

40

Appendix B
RDTAPE, WRTAPE, IOWAIT

These routines use buffer statements to simulate the
I/0 statements used in various NCAR data processing programs.
The routines RDTAPE and WRTAPE are often used at NCAR
because they are somewhat more general than the buffer
statements.

SUBROUTINE RDTAPE(NUNIT,MOBE,NTYPE,BUFFER,LENGTH)
DIMENSION BUFFER(1)

IF (MODE .GTe 1) MOOE=MODE-2

BUFFER IN{(NUNIT,MODE) (BUFFER(1) yBUFFER(LENGTH))
RETURN

END

SUBROUT INE WRTAPE (NUNIT,MO0E,NTYPE,BUFFER,LENGTH)
DIMENSION BUFFER(1)

IF (MODE .GT. 1) MODE=MOOE-2

BUFFER OUT(NUNIT<MODE) (BUFFER(1) ,BUFFER(LENGTH))
RETURN

END

SUBROUTINE IOWAIT(NUNIT,NSTATE,NWORDS)
IF (UNIT,NUNTT)10.11,12.13
NSTATE=10

NWORDS=LENGTHF (NUNIT)
RETURN

NSTATE=1

RETUPN

NSTATE=2

NWORDS=LENGTHF (NUNIT)
RETURN

END

http://www.fastio.com/

ClibPD

41

Appendix C-1
Listing of RPTOUT

This routine blocks short variable len i

.) i gth reports into a buffer (NBUF

that is dimensioned in the main program. It outputs a record from thé ‘

; b?ffer.whenever the buffer is too full to hold another report. If the
dimension of NBUF is changed in order to accept longer logical records,

one muﬁt also set KMAX equal to the dimension and set KLMAX equal to the
dimension minus 8.

SFORTRAN
SUBROUY INE PATOUT (NUNTT , NBUF (L OCRP T, NNOS . L)
€ JULY 71 VERSION FOR NOW NCAR SYSTEWS 0 JOSEPHM
£ REQUINES A4 COWPATIBLE SAYTE ROUTINE AND WRTAPE STMULATOR
DIMENSION LOCRPTIL)
DINENSION NBUF 13600
DATA (XMAX = 368)
DATA (KL™AX = 3%52)
TMIS ROUTINE PACKS LOGICAL RECONDS IMTO A PMYSICAL RECORD
THE MORCCOUNT IS PUT INTT 1ST 12 8ITS CF REPORY
RLWAX IS THE WAX LENGTN OF A LOG RECORD
WBUFC1) TS 1ST AVATL CELL IN sUFFER, MAKE [T O BEFORE 1ST wRrvTe
NBUF (2) WILL WAVE COUNTY OF LOGICAL RECONDS OUTPUT
MBUF(3) MILL RE COUNT OF PHYSICAL RECORDS OUTPUT
MBUF (6) 1S COUNT OF WORDS QUTPUT, WOS IN RPTS = NOUF (&) ~2ONBUF(Y)e
MBUF (7) 1S THE 1ST WORD FOR THE RECORD.
JL & 2 WEANS MO REPORT, OWLY QUTPUT LAST RECORD
USER WUST ENO FILE AND REWIND TaPES
WRITTEW 87 ROY JEMWE AT NCAR W NAY 1966
1IF (L (EQ. 2) GO YO 60
IF (NRUF (1) oME, 8) GO TO &
wauF (L) = 8
& IF (MWDS . GTe KLMAX) GO 10 78
17 (wWW0S .LE. 0} GO TO 79
16 WN s NBUF (1) » NWDS
IFENN JGT, xmAX) GO YO 68
€ WOVE THE REPORT INTO THE BUFFER
K = NOUF (1)
Catl SBYTE(LOCRPY,NMOS,0,12}
00 S8 1s1,NWOS
s MBUF (Xe[=-1)sLOCRPT(T)
NOUF(2) s NBUF(2) ¢ 1
NOUF LT = NN
RETURN

L LLLT]

oo

QUTPUT A RECOPD WERE

60 IF(NOUF (L) LGT. wmax) GO YO 78
1IF (NSUF (1) EQ. §) eETURN
KKK = NBUF (L)
XXDAT » KKKe7
KKW0S » XKDATet
WBUF (7) s KXWOS
1ENOsKKDAT 0
NBUF (XXK) 38
00 59 Is7,1EWD

€9 MBUF 1XKX) TNBUF (KKK} eNBUF (1)
IF (XKWOS .iTe 31 GO 7O 70
cALL ll'l’!(!u”!?.l.ﬂ-l.u’(7‘.‘!!0!!
NAUF (33 = NBUF(3) o 1
NAUF (&) & NBUF (W) » KKMOS
NBUF (1) s 8
CALL ZO“OIY(IU.XY.lSVl'E'NUOI.'l
IF (NSTATE . ME. 8) GO 10 61
IF (WWOWRT ,EQ, XXWOS) GO 10 63

61 PRINT QOZ'NUNIY.NBUflJI,NIOII'.NS'IT!

962 FORMAT (¢ *+esRPTOUT=BA0 PHYSICAL WRITE (UNIT,PHYS REC,LENGTH,STATUS
2 %18

63 IF (JL .ME. 2) GO YO 10

65 NBUF (1) 3 O
RETURN

C MERE FOR PFCORO LENGTH RYSTERY

70 PRINY Qa0 NUNT T NRUF [2) , NuCS

368 FORMAT (® +0eRPTOUT-BAD LOGICAL LENGTHM LUNIT,LOG REC.LTH *.310)
GO TO 65
€m0

www fastio.com

http://www.fastio.com/

ClibPD

42
Appendix C-2
Listing of RPTIN

This routine unblocks wvariable length reports from records that are

read into a buffer (NBUF) that is dimensioned in the main program. The input

records were created by RPTOUT on the user's machine or on a machine with the

the same word length as the user's machine. If one must change the buffer size

in order to accept a larger record from another machine,
NBUF dimension and set KMAX equal to the dimension minus

www . fastio.com

 eastitin l"lll"l'-l“-t”l.—‘-u.ltul.“l
€ MAT 71 viRSLON FOR MOW wCAR STITIAS
€ REQUIRES A& COMPATIBLE LOYTE AONIlNE ANG ICIM .‘“h'.
JINENLION LICRPT (1)
JINENIION BOUF ¢ 108
TalS tOuiing wwPaCas L O6ICM CisomS ‘.l"‘l er wiout
WOUPil) ual B LT TO 0 sas0RL 13T AAD 0N TANL
NOUF(2) elis mavl & SOUMT OF LO6ICAL Ra(COR0S llla
BOUPLS) elih RAVE & COval 3F PuTSiCAL 4ACIMUS Radd
NOUFins sila ®AUC A COumT OF 8040 «C(AD FROM TP
Nouf (3) AAS SOROS (W Tuld C(COAD
ROUFINs 1S Ink 260G STASUS. 106300.19€00 00y Cm3Sun -afOund [Gaud
NOUFIP) i3 Twg FIRST ©0RQ OF Ing ALIOM0, 1T =4S QNI O/ aiCOAS
IF 44 1S L w J0uf el Om TQ miR! eEPUR! LICIPY FOR (OF
$F 42 (s 14 RQTUAM FusL RPT VP 10 RAR OF CLAAL ORI
BALTTIEN oF W07 Mg AT wCAR IR Jund 1940
Jal8 (RAAR o 1%es
17 smewrei) Buctd 63 10 3

aonnenanann

IF (aduFit) Jate 7) @ T8 o8
€ mifd 10 L09& AF & wiw RCOA
(TN
3 o (umall (munLT AoUS (0) , A804L0)
S CMe WIASL invalT i 00170 40800
o Coke LINALT (MUBLT 08w |00 800RL2
-yt e 8
ol » meufind
17 1J60F .83, L) <8 10 o2
1P (neQRtd.bl.2) 63 10 36
lidteonews (3103
PRURT 00 ARLT o LERLC . NuOREO AdF (7] WP 1)
04 FORRAT 1® 200@PTIN=amOAT SuvS LG VALI PRTS wiC A TH(IP LINySTAIVS
2 %8ie
3 tu s
10 mnu " =e0fed
17 (maufilt .4Q. »agu(d) w3 13 10
Iitcuomeus ¢32 e)
PRIN! 902, MNLT, [EALC. 800RCO NOWP (7)) , 00uf t0d
SOL FOLRBT (® 00salnegAl SulS LINWALTPIS Rdu i inil2P In.SlATVS ©
25100
I 1adF 1) ile 2 O0Be MOV LPY L6T. 3340 40 10 98
(Ftaeuntd, Ll .n0us (711 GO 10 10
P8 o WML
18 <qads ° ABUF IS o
€ &84 i3 1 neF Xl“l 708 Tng SexSus sORS
&4y o R48QS ¢ 7
limdsasugs »b
apdne
164 Iel, ik
0L aSumenSuncnsus |)
ufins o 0
17 (meul {8RJ) <iQe WD) 6 TJ 20
la@LConduridret
PALNT Sobs ALl (CRLC HUOAMLD . nOUF (70 s uEOF
P06 FOIRAT (S soodPTINCA0 SMACASURWNLT (oS ACC 0 T EEP TN STAIWS ©

devim2
i s B

29 w0Fi3) b mouFLSs o L
noultad 8 NOVF) onbul 19}

C nelt 10 AT & L“l‘& 1CCone
8 OF * wBuF L

'
CaLL wsfle (MBS (0D (0003,8412)
1V 142 ombs 1) o0 TO = >
I t.e ieae
18e s&l”l“l“\'ll'l'“
~ Wlua
. Gal & l.u.L eobica 2cI%0
e Cunflnui
1F (ma0S L Gl. 0 J0NG. WEOIPRGUWICL) (Ll N idlens D TO w0
ls“.u‘oﬂuu .
PAIni Yee, munll, leREC HalD
W60 FIANAT (® soeqPTlNedal LOGICAL LEMBINUBLT L0¢ diCenTH 3100
o 193
.o LOwflmui
C MBwF(S) » o 1S Ind INILZ FOR Tni CaxIul mORJ
wh o ey
IF (meuS.nT.RLAAE) o8 1O w8
[T AN 1T}
~8 Conflwe
3 tee 01K
100 LUCAPTIL)snBW (KoL)
nJFi 2 b mOUF (2wt
WeUF 1) 2 NBUFLL)enudS
IF (newF (L) Jide MIF(I) o &0 GO 1D S2
R funn
$2 wa4ftLr = 7
CALL WIAPL (MUNET)1ed ROUF (7} ,aR83)
aluan
Contimé
PR(NI 181 .N8IF LT
1301 FORAT(® wis (S wOF A RPTIN 2€C040 *,020)
HOFe2
wd to %2
o

-

¥

he must change the
6.

http://www.fastio.com/

43

s Appendix D
RPTINX

The following is a listing of the routine RPTINX which is used to read RPTOUT
records created on a machine with a word length different from that of the reading
machine. In general, this routine operates like RPTIN. NBUF is dimensioned in the
calling routine and must be large enough to contain the longest record written.
IMAX is set to the dimension of NBUF and KMAX=IMAX-6. The parameters LIN and L@T
must be set to the appropriate word lengths.

SEORTRAN
SUBROUTTINE APTINX (NUNTT NAUF,LOCRPT ,NMOS,JJ . XLNAK.JEOF)
C 10 QEAD WPTOUT RECORDS WRITTEN ON A WACHINE OF WORPD LENGTM SLING BITS IN TO
C & MACKINE OF WORD LENGTH SLOTE BITS = BUFFER LENGTW IN IS IWAX
C LOT WORDS - IE LARGE ENOCUGM FOR THE SUFFER SI2E IN LIN BIT wORDS
C ML LENGTHS TN THE CALLING SEGUENCE ARE SLOTS SIT WORDS
€ NCAR 2 a7 D JOSEPKM
DIMENSIIN NBUF (1) ,LOCRPT (1)
DATA IWAX/360/
DATA XWAX/3ISk/
DAYR LINZIT2/
DATA LOT/H0/
COMmON/ IND/LOT
IF tWBUF{1) .EQ. @) GO YO 3
IF (MBUF (1) .NE. 7) GO TO &0
Gh Ta 6
CALL ICWMATTINUNIT,NBUF (6),NWRED)
XLoLOT
xFaLIN
XFaxL/XF
A TOYAL
10aLIv=LOT
Lile?
LGET=LIN
LOFF=g
IF (LOT .GE. LIN) GO TO &
LOFF=1In
LGETsLOY
XOFFsLOFF
AP XOFF/XL
IP=xp
LOFFa(X®=IP XL 0,01
LIIstPe?
CONTINUE
CALL ROTAPE(NUNIT,1,0,NBUF(7),XNAX)
CALL ICMATTUMUNIT NBUF(6) . NMRED)
I8ITSaL IN
MBUF (1) 34
JEOF =NAUF ()
IF (JEOF L.E% 1) GO YO &2
NTSTeYFONWREDS, 0L
TIF (NTST ,GT. 2) GO TO g0
TERECINOUF () et
PRINT 960,NUNIT, ITREC,NWRED,NBUF (6)
968 FORMAT(® sos ROTINY SMORT PHYS REC,UNIT,PMYS REC.EXP LTH *,4l18)
10 MBUF (S} sNuRED
CALL GBYTE(NBUFILIT),INOS,LOFF,LGET)
NHUSYF SNWRED
HUL2NMU=TF o, 99
1F (I¥0S .GE. “WL AND. TNOS .LE. WWU) GO TO 18
TERECINAUF(3) oy
PRINT 962, NMUNTT, TEREC.NWRED, INOS NBUF (6)
Q62 FORWAT(® +os RPTINY = BAD PMYS LTH,UMIT . PHYS REC , LTH, EXP LTW,
2 STATUSS,SI8)
€0 70 %
18 CONTINUE
NAUF (6130
NBUF (3) sMBUF 3) 0t
NBUF (o} aNBUF (&) +NWRED
LATTISSLIN® (TWCS=1)
JEOFINRUF (b)
XBITSSIBITS
XPEXBITS/XL
1PexpP
10Fs (XP=1PI* XL+, 01
1181Pst)
CALL GAYTE(NSUF(ITI¢6),NWOS,10F,12)
IF (KW0S .GTe 0 oAND. MWOS LT, (ITKDS=2)) GO TO 4
TERECINAUF (2} ¢4
PRINT 9h&,NUMIT, IEREC,NWDS
FORMAT(® se¢ RPTINX- BAD LOGICAL LENGTH,UMIT,LOG REC,LTN *,518)
6o 1Cc 3
CONTINUE
LTHaXF o NUDS+, 9
IBITSaIAITSeLINSNNODS
WWOS=YFOuNDSe, 99
CALL GOYTES(NBUF(II+6) 4 LOCRPY, IOF.LOT.0.4M0S)
NBUF (2) sNOUF (2) ot
NOUF (1) sNBUF (1) +NNOS
IFf (IBITS .GEs LRITS) GO TO 52
RETURN
NAUF (1) 27
CALL ROVAPE{NUNIT,1,04NAUF (7)okmAX)
&2 CONTINUE
RETURN
END

-

*err

L3

9%

-

“

Ed

s

~

ClibPDF - www fas

http://www.fastio.com/

ClibPD

44
Appendix E

Routine to Unblock and Unpack Rawinsonde Reports at NCAR

The call to RPTIN unblocks each rawinsonde report (raob). The calls to GBYTE/
GBYTES unpack the raob. Part of an example print for station number 3 (permanent
ship C) is listed below: The data is in order of decreasing pressure, except that
the surface pressure may be first as in this example. The height at the surface
level should have been coded as missing. When the data is used in calculatioms, the
bits giving the units for wind speed and moisture must also be unpacked. ’

'

PROCRAN InmAQ
OINENSTION IBUF(3603, LOCI188), IPRESSISE) ,INTI36) YITERPISE) .
T TRMISE), IDOCLSN L LFPISH)
ITAPE o 2 -
REWINO TP
o CALL PPTTN(ITAPE, IOUF,LOC, IN0S, 10,108, 1T0F)
19 (TEOF .FQe 1) GO FO 900
WREC » MAEC o 1
tF (1L0¥ .£0. 6) GO 1O 19
PRINT I8, nAve. IN0S
436 FORMATILN ,*REOUNO®, 2I7)
18 COmTINUE
CBLL GAYTE (LOC,NFORN, 12,62
CALL GEYTEILOC NSTA, 10,17
CALL GBYTE(LOC,nv®,38,7)
CALL GRYTE(LOC.HO.02.8)
CALL GAVTE(LAC, MOV, 06,5)
CONrIwge
CaLL GBYTEILIC . e, 31430
CALL COVTEILCC,MAT. 5611
CALL GBYTTILOCIZ) ¢MON, 7, 12)
CALL GBYTEILOCIZ) oMELEY.19.10)
CALL GAYTEILOC(2),NSORC,33.7)
CALL GYTE(LOCIZ) NINOs0603)
CALL GRAVTEILOCIZIoLYLoA0e4)
CALL GBYTESILOC(I) L IPRESS belleblel W)
CALL GOYTESILOCEIN JINT,17,40.864L VL)
oA ,5."(3'&05(3).IVI"‘!)oll-ihLﬂ.l
CALL GOYTESILOC(3)oIMMonaeltobl vty
COLL GCBYTES(LOCIII ID00,9%:9,83.i00)
CALL CITTESILOCIN) (IPFoReBabbelvl)
00 o8 TetuN
tNTIT) & INTCTY = 1008
ITEWP(T) » [TEWO(T) - 1008
1Am¢l) o IMRET) - 1000
o8 CONTINU®
sRINT ns.m.-m.nu.-n.uo.nov,-l.un.Ao-.uuv.-se«:.
X NIimO.W
936 FORMAT (im ,*STATION [OENFS, L3I
00 30 Isi.n
PRINT 937 ,.4%ECL 1 'X’WSSIH-XI'III'"!”lH-Xﬂlh-lﬂ(!)'!”!ll
937 FORMATIIM ,*TESTS, 18,13,9K, OI7)
Se comTImuE
sg @ v LR
GO 10 &
908 COnTINUE
PRINT 968, MREC. KLo (IBUF(TVoInRo bt
900 FORNAT (1M ,°00MWC®, SI0)

caLL gxt?
e
L]

qTATION IDENT . 1 3 . 1 <
re8Y ["2 [} . (24 (1] 1
1esT . 2 1009 -4) " "9 300 H
rest] "0 320 20 (14 5¢ .
resT . s %00 778 "o 1] %4 1
TEeST . S 50 122¢ 48 a8 2 i2
resT .. 000 1893 <l07 34 109 v
EST .7 786 2200 -l28 3] 152 .
st P 70 2”12 990 o 17s ’
ves? . ® 50 3200 -1%% (13 182 T
r€ST .10 e 08 J8T2 I8} . 182 [
€St 11 550 o508 -21) % 160 .
resT .12 s¢0 S218 990 n 137 2r '
res? . 1) 80 %970 <J01 [152 23
resY .l 000 0797 <285 [1) 170 37

www . fastio.com

http://www.fastio.com/

45

%
I’ .
Appendix F
Subroutines GBYTE and GBYTES for IBM 360 Systems
STAT SOUACE STATEMENT T Y ST -
[ITER.ZERD TEST FOR 2ER0 1 TERATION COUNTY
L . [T 16 WOT, COMTINUE wiTM INITIALIZATION _
M O%0% QIKURENTATION eese . ossT.e1TR €LSE, TEST INITIAL DFFSET I RANGE
- £a AT 32 FALL
o ¢ TME FOLLOWING AOUTINES AL Qv FORTAMS ACCESS 1O 81T STRINGS (BYTES) - ‘za"—n{f.-uqi ;mr{ﬁu 1 nt&'v?m
S e OF ARBITRARY LENGTH ANO POSITION, PERWAPS CROSSING wORO BOUMCARIES, . nv2
6 © [N THE RANNEN SPECIFIEC BELOWS 100 w11 A NSKP,NGIT ACO MEIT TO NSKP FOM MULT ACCESS
M 101 Imt2 18 PCRO. NBFW (PCRD P INCR PACKED ARY PQINTER
[B4 CALL GBYTE (PCKO,UNPK, TMOFST,NBIT) 102 e L0040+ PCKDD PICK UP SECOND WO OF PACKED ARRAY
9. CALL GBYTES(PCKD.UNPK.INOFST.NOIT, NSKIP, ITER) 103 _ s womk,eiv COmPLENENT NBITS (ROOULO 320 _
-—-iae N 104 R i
PCKOT THE FULLWORD N MEMORY FROR NMICH Uk T 15 70 109 [1% FAlL 15 NOT, LE.32, FAIL
BEGING SUCCESSIVE FULLNORDS witL SE FETCMED AS 106 STH WORK,STOREs ELSE USE TO SET UM BYTE SMIFT COUNT
REQUIRED. w07 e OF SAL {RX} I{NSTA IN STOAE $EQ
unNeR 3 THME FULLWORD 1N MENORY [(NIQ wei{M THE INITIAL BYTE 108 " s1TS,08817 magk 8175 1O SwifT o INITIAL OFFSET
OF UNPACRED DATA (S TO 8E STORED: SUBSEQUENT BTYTES 10¢ L WORK(BITR . e NARE WORKSD2, AGAIN - p—
R — amo.. WILL BE STORED INTO SUCCESSIVE FyiLy s 110 ¢
N 111 TEsT c atvs.eTe COMPARE 175 T0 SWIFT wiTw RESAINING
INOF 3T A FULLWORD [NTEGER SPECTAYING THE INGTAL JFFSET uz BL SHIFY 1¥ TSt CEED wiTM SMIFT
M BLTS OF Twe £IRST OVIE, COUMTED FROM Tng 113 - et 15 B1TS.GT 81T €8 OvER SPLIT wOS
LEFTROST 81T In PCKO. s cosv ELSE, IF BITS.EQ.B1TA. AECOPY HiwD
nelTSE A FULLWORD INTEGER SPECIFYING THE WunSER OF BITS —_ ‘550
M!’w £GAL BYIE wiOTWS 1T WS, BT peaBT RTCOAD WIwo FEDW WEW WiTw FRTV LOwo
ARE IN TME RANGE OYTES OF widiw (1, 32 LA PCRONSFRIPCRD) INCA PACKED ARY SOINTER
WILL BE RIGHT JUSTIFIED IN TWE LOw-ORDER POSITIONS S LOwD,0((PCROI ANO PICK UP NEXT PACKED LOWO
- OF THE UNGK FULLWORDS, wiTw MICH-OROES 2ER0 Flii. %] TR, wORK MESET SITR TO 32
WSKIPT A FULLWORD IMTEGER SPECIFYING THE NuUmBER OF 811S . sTone PROCEED w(TH STORE OPERATIONS
TO SKIP BETWEEM SUCCESSIVE BYTES. ALL WON-WEGATIVE
i N [—— .__L‘_ll'_tﬂww'ﬁ_u. E{sz“" 130 SET Us BITR AS SLOL SWIFT COUNT
iTER: AFULLWORY T » VinG TWE TorAL “wumedl of LOL SHIET LEFT DOUBLE LOGICAL, A1wD/LOWD
BYTES 10 BE WNPACKED, 45 COVIROLLED WY INOFSI, s uu.un DECR BITS 10 SHIFY 8Y SWIFTED 8118
MEIT AND NSKIP ABOVE. ALL NOW-NEGATIVE [TERATION L) sPLITY SveASS FAST FULLWORD SKIPS
COUNTS ARE LEGAL. - N T COPY BITS REmAINING TO SWIFT 10 OFSI
o _{DESTAOYING mm. OPFSET Panmy
Y MU e SETBATLE T T "IvIoF BY 52 10 GET woroY 107 SAIFY
35 . T A MOLT IR TCESS TCRTVIES) wiTw 1 TERed (qul ce OF 3T, 2ER0 u-u\.uumusu SETTING COND COOE
3 0T 1) 1S E2ACKLY (w:nu-u TO A SINGLE-BYTE IF REMAINING SMIFT .LT. | wORO
37 AMCCESS (GBYTED . e SPLITY PETCH MEXT SEQUENTIAL LUWY IMMED
e 20 AN ERROR DETECTED IN Tat CALLING SEQUENCE OF SLA 088T,2
bodi EITHER TEVTE OR CBYTES SUPPRESSES BYTE ACCESS, ae PCKO,OFST
00 _ o AND_SETS TwE FIRST ELENENT OF UNPK o R*FFFEFESR® v TWIWB. O ekl
a- B T SLA OFST,) mULTIPY BYTES OV 8 T0 GET 81T
[sA BITs,0887 AMO OECR BITS REWAINING 0 SHIFT
"1 .' - e PLKD, MEFWIPCRO D INCR PACKED ARY TR
1 Pl
L, e moses v e bl manice e sl wets (o0
«3 2ER0 €U x'0* ConsTant 1E80 -8 T AT —_
s PCKD oy ADDE 08 PACKED ARY ELEWEN - N
e t e "‘:“"o :" “"“ 162 SHIST ST BITS,av8 SET UP BITS AS SLOL SMIFT COUMT
hod 2::: Ho T o Lt 183 SLOL MIWG,e=¢ SWIFT LEFT DOUGLE LOGICAL, wIwD/LOWD
50 NSKP £a0 TTESATIVE 81T SKIP 1ee sk Mta.ars OECR 81T REMAINING OY BTS smiFTED
st ives EQu ITERATION COUNT (.5E.0) e
32 81TR [BITS AEMAINING 1N WiwO .
"3 @lTs T TEw wif{ 10 T wIRPT
Se WOAK £0u wORg ;uuvn even secistEns T les .
85 wiwd [®I-OROER wORO (EVEN Les STORE '] SYTE, HIND COPY WIWO TO BYT!
25 LOWO [LO-OADER wORD OOD REGISTERT r F A HoH snist llGnl(ullu'nl-ao(ﬁ LERO FLLL)
s7 ovTE £ RESULTANT BYTE . RO T £r Leao e
s o :—‘—:'—‘—.%%.——m%ﬂ“"" —_— sTaEl ST SYTE.0L ,uNPx) FILL BYTE (NT0 UNPACKED ARY -
s oy g [en LA UNPR ,NOF W (UNPK § AND INCR UNPACKED ARY POINIER
00 st g e a%0s et e SITS . N5kP RESTORE 1T » (NSKPen8IT)
:; :u- (Y] husBER OF BVTES/FULL wORD KT ITER,TESY DECR ITER COUNT, CONTINUE TILL ZERQ
.
.y .
e oen.conE_tee ——em s 135 a7~ WETUR TG T RETTORE G WG w0
15600 340N-CL-453 RETURN CHAKGE LEVEL
o6 GOYTE> CSECT o+ saINE ENTAY POINT .
3] ¢ ENTRY GBYTE ALTERNATE ENTAY POINY ::h(uv :.l o.u.uouwn looulhoul(u)
. R N (HA
ualnc GavTES. past ghiay P AOR €578 In A19 BY CALLER oo FAlL - BYTELaxterese WAKE SYTE A FULL w0 OF 1'%
savt 10:13) SAVE CALL NG P80 SECIITERS {34 - el T4+ 1T, 3T, b T ~ING FILU INTG UNPACKED ARRAY ~ .-
_T'o- Te 0N~ L-4 av AN » v
0,12.12008¢002~¢0021 /7180100113 .
n u WSKP, [TER, ConBAME]) PICK UP WSRIP, ITER PAAR ADDRESSES Lrome
74 v NSK P, 01 NSKP S _ PICK Us BIT SAIP C w320
74 LT e, 0l TS T FiCk UB [TERATION COunt e
__# I . int1 JUNs_INTO CODE PROPER - kg —mr ——— .
0 . .
Te GBYTE DS Om FORCE MALFWD ALLIGHMEN 0,
ﬂ usinG GBvTE Dast TTT ALY ENYAY a00R ESTE In us (3] Cnul
SAVE 10.12) SAVE CALLING PROG AEGISTERS (MACROY C e =
- lln 36ON-CL~43Y SAVE : 3-4
82¢ STH _ 0,12,12948¢002-10021/160181113) R
N L TYER, TTER Wax{ [TERAVION TOUNY TERG
[T ~
88 tnlT saLk 8ASE,D T RE-ESTABLISH A0ORESSABILITY
' A
e > < bick ub ARY AMEPTARRETER AODAESSES
PICK UP FIAST wORD OF PACKED ARY .
A¥F i " FULL [] H L)
<0 [y OF$1,0¢,085T1 PICK UP INITIAL OFFSET 817 COUM
(39 [y u817,00, 0011y 7 TFICK uP né:'a‘i‘lnsnvfe To webaca
2 SR IEAG,ZERC 1ggg,ouv A£G .
L} - T 7 wolk.S1TR ‘ WaKE woAKe3Z'

0.Com

ClibPDF - wwwy fasti

http://www.fastio.com/

ClibPD

46

Appendix G

Subroutines GBYTE and GBYTES for UNIVAC 1108 Systems

SFORTRAN, FL

OO0

OO0 OO0

C
c
C

SUBROUTINE GBYTE(SOURCE,DEST,0FFSET,SIZE)

GBYTE ROUTINE FOR UNIVAC 1108

IMPLICIT INTEGER (A=2)
DIMENSIUON SOURCE(2)

TEMP=0

I=0FFSET/36+1
OFF=IABS(OFFSET=(I*356=3b))
N=SIZE

IS BYTE ALL IN ONE WORD
IF((OFF+N) 4LE.38) GO TO 11
NO - MOVE PARTIAL TO TEHP

NN=36=0FF
N=N-=NN

TEMP=FLD(OFF 4NNy SOURCE(L)) *2*%%y

OFF=0
I=1rl

10 DEST=FLO(QFFyN,SOURCCE(I)) +TIMP

RETURN
END

SUQRUJTINE GBYTES(SOURCE,DEST,IFFSET,SIZzySKIP,yLJOP)

o8YTZi5 ROUTLNE FOR UNIVAC 11038

IMPLICIT INTEGER (A=2)
OIMENSION DEST(2)
OFF2UFFSET

00 14 I=1,L00P

\]

CALLS COvPANION G3YTe ROUTINc

CALL -GBYTE (SOURCZOESTI(I)0FF,3IZ2)

13 OFF=UFF+SIZE+SKIP
RETURN ‘
END

www . fastio.com

http://www.fastio.com/

	/huron/ftp/docs/papers-scanned/tif/rj0197.tif
	image 1 of 50
	image 2 of 50
	image 3 of 50
	image 4 of 50
	image 5 of 50
	image 6 of 50
	image 7 of 50
	image 8 of 50
	image 9 of 50
	image 10 of 50
	image 11 of 50
	image 12 of 50
	image 13 of 50
	image 14 of 50
	image 15 of 50
	image 16 of 50
	image 17 of 50
	image 18 of 50
	image 19 of 50
	image 20 of 50
	image 21 of 50
	image 22 of 50
	image 23 of 50
	image 24 of 50
	image 25 of 50
	image 26 of 50
	image 27 of 50
	image 28 of 50
	image 29 of 50
	image 30 of 50
	image 31 of 50
	image 32 of 50
	image 33 of 50
	image 34 of 50
	image 35 of 50
	image 36 of 50
	image 37 of 50
	image 38 of 50
	image 39 of 50
	image 40 of 50
	image 41 of 50
	image 42 of 50
	image 43 of 50
	image 44 of 50
	image 45 of 50
	image 46 of 50
	image 47 of 50
	image 48 of 50
	image 49 of 50
	image 50 of 50

